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Introduction

In Sur le nombre d’intervalles dans les treillis de Tamari (Sém. Lothar. Combin., B55f, 2006),
Chapoton defined new intervals in the Tamari lattice, and gave the following counting formula:

3-2"72(2n — 2)!
bipartite planar maps with n edges (n—1)(n+ 1)

which also counts the number of bipartite planar maps with n — 1 edges. See also OEIS A000257.
Chapoton and Fusy (unpublished) found a symmetry in three statistics on new intervals. They
are equi-distributed as the number of black vertices, white vertices and faces in bipartite planar

maps, three statistics well-known to be symmetric.

We found a bijection that naturally shows such correspondence, and also some further ones.

) Chapoton’s new intervals
degree trees with n edges As pairs of binary trees, some Tamari intervals are “compositions” of smaller Tamari intervals:
ANy NE) Y- NE :
S e ) fT\ fT\
1-th leave _ .
Chapoton’s new interval of length Tamari intervals without such “composition” are called new intervals.

2n + 2
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Chapoton’s new intervals (Dyck path version)

Bracket vector Vp of a Dyck path P:
Vp(2) = half-distance of the ¢-th up-step to its matching down-step

inarti - P < @ in the Tamari lattice < Vp < V5 componentwise
bipartite planar maps with n edges <@ P =S Vg P

t A Tamari interval [P, Q)] is a new interval if

(i) Vo(1) =n;
(i) Forall 1 <i<mn, if V(i) >0, then Vp(2) < V(i +1).

Three statistics for an interval I = [P, Q)]

coo(I) = # {8} . co1(]) = # LéOO} , aa(l) =# L’é O}

0 0 : . :
degree trees with n edges Symmetry between cg o(1),co.1(I),1+ c1,1(I) when summing over all new intervals of size n
Example OA 0
t P I =[P, coo(l) =T
60,1(1) =9
0
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Chapoton's new interval of length Vp=9, 4,0,2,0,0,0,2,0,0,0,0,0,0,0,0
2n + 2 Vo =15,12,9,3,2,0,0,4,3,2,0,0,0,0,1,0
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bipartite planar maps with n edges

0 0
degree trees with n edges

i

Chapoton’s new interval of length
2n + 2

Wenjie Fang, LIGM, Univ. Gustave Eiffel, CNRS, ESIEE Paris, F-77454 Marne-la-Vallée, France

Bipartite planar maps
Drawings of bipartite graphs on the plane, rooted by choosing a corner on the outer face

Three statistics: black, white, face, symmetric on the set of bipartite maps with n edges

Degree trees

A degree tree is a pair (T, ¢), with
e [ a rooted plane tree,
e (: a labeling on nodes of T,
such that for any node v in T,
e visaleaf = f(v) = 0;

e v not a leaf, with children vy, vq, ..., v
=Vl(v)=k—a+ )  £(v;) for some 0 < a < {(vy).

Edge labeling £ of (T, ¢): on the first descending edge of every
node v, with value a used to obtain ¢(v). Clear bijection ¢ </,

Three statistics:
e Inode(T,/): #leaves,
e znode(T,/): #nodes with £ (e) = 0O for its first down edge e,
e pnode(T,¢): #nodes with ¢5(e) # 0 for its first down edge e.

Edge labeling ¢5 of (T, 7)
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From maps to trees: an exploration

Depth-first exploration of edges, clockwise, starting from the root corner

Turning edges in M into edges in (T, ¢). Walking only on black vertices, except for leaves.

bipartite planar maps with n edges

0 0 O‘.

degree trees with n edges o) — 9 9
O O
O
i .
O
@ ®
M T (M)
Statistics correspondence
Chapoton’s new interval of length white(M) = Inode(T, ¢), black(M) = znode(T,¥¢), face(M) =1+ pnode(T,¥).

2n + 2
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From trees to maps: an exploration

Depth-first exploration of edges, counter-clockwise, starting from the root

Turning edges in (T, ¢) int edges in M. Walking only on black vertices, except for leaves

bipartite planar maps with n edges

0 0
degree trees with n edges

t g0 |e

Chapoton’s new interval of length
2n + 2
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From trees to intervals

The certificates of nodes in (T, /) is defined by a coloring process (reverse preorder):

e Initially all nodes are black;

_ _ _ e v a leaf = the certificate of v Is v
bipartite planar maps with n edges

e v not a leaf, e its first down edge = visit nodes after v in preorder, color visited nodes red,
stop just before (£ (e) + 1)-st black node. The certificate of v is the last visited node.

Certificate function c of (T, /): c(u) = #nodes with u as certificate

From (T,7) to I = |P, Q)]
e P: concatenation of ud®Y) for v in preorder;

o (O: u@'d with Q" from contour walk.

0 0
degree trees with n edges

i

function ¢

Chapoton’s new interval of length
2n + 2
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From intervals to trees

From I = [P, Q] to (T,¢) (or (T,4,)):
o T from () = uQ'd;

e /: from rising contacts of subpath between matching steps.

Statistics correspondence

co.0(I) = Inode(T,?), co1(I)=znode(T,l), c11(I)=pnode(T,7?).
For M +— (T',0) «+— I:

co.0(l) = white(M), «co1(L) =Dblack(M), c11(I)+1="face(M).

Symmetries and structures

e "Derecursivified” version of recursive decompositions known to Chapoton and Fusy;

e Bijective explanation of the S3 symmetry.



