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Binary trees

Binary trees : leaves or internal nodes with 2 children

Size : # internal nodes

=)

Enumeration : Catalan numbers Cat,, = STl G
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Rotation on binary trees

Rotation (from left to right) :

Rotation = order : Tamari lattice

Can also be defined on other Catalan objects (Dyck paths, ...)
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Tamari intervals

Tamari intervals : a pair of objects S < T comparable in Tamari lattice,
also denoted [S, T]

AN/

Counted by Chapoton in 2006 : for all sizes n, the number is

2 dn +1
nn+1)\n—-1)"
Same formula as bridgeless planar maps and 3-connected planar
triangulations. (There are several bijections.)

How is it done (by Chapoton) ?
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Lego of Tamari intervals

Operation @; : compose two intervals in a big one

A A}@AA

i th leaf
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New intervals

An interval I is new if it cannot be constructed as I = I; &; I».

IN

not new

IN

new

Easy criterion : common non-root internal nodes
Geometrically : new < not on the same facet of the associahedron
A structure of operad, with new intervals as atoms

Unique decomposition of general ones into new ones = enumeration
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Counting new intervals

Théoreme (Chapoton 2006)

The number of new intervals of size n is

3.2772(2p — 2)!
(n—=Dln+1

With this formula, Chapoton counted general Tamari intervals.

Same formula as bipartite planar maps!
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Dyck paths

Dyck paths :
e Formed by up steps (1,1) and down steps (1, —1),

@ Starting and ending on z-axis, while staying above it.

Vp =0,5,0,2,1,0,0

Matching steps : connected by horizontal line without obstacle

Bracket vector Vp of path P :
Vp (i) = half-length from the i-th up step to its matching down step

Rising contact : up step on z-axis

rcont(P) : number of rising contacts of P.

9/27



Introduction Statistics Bijection
0000000 0@000000 00000000

New intervals, with Dyck paths

Tamari lattice : P < Q <= Vp < Vo componentwise

Vp= 9, 4,0,2,0,0,0,2,0,0,0,0,0,0,0,0
Vo =15,12,9,3,2,0,0,4,3,2,0,0,0,0,1,0

An interval [P, Q] is new iff :
e Vo(1) =n;
o V1<i<n, Vo(i) #0=Vp(i) < Vo(i+1).

Conclusion
[e]e]e}

Vp

Vq
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Three statistics (nearly) symmetric
Three statistics on an interval I = [P, Q)]:
conl) = # o]+ em(n=# | L] entn=#]%].

Then rcont(I) = rcont(P) (lower path).

, coo(l) =7

I=[P,Q co1(l) =5
ci(l) =4
reont(l) =7

(Experimental) symmetry between cqo(1),co1(I),1+ c11(I) when
summing for all new intervals of size n (Chapoton, unpublished)

Similar symmetry in bipartite planar maps. A link?

usion
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Bipartite planar maps
Bipartite planar map : proper drawing of bipartite graph on the plane,
rooted at a corner of a black vertex on the outer face

1 white(M) =7
5

Three statistics of a bipartite planar map M :

white(M) = #white vertex, black(M) = #black vertex, face(M) = #face.

Equidistributed (# cycles of permutations in oe0,¢ = id,,)
An auxiliary statistic : outdeg(M) = half-degree of the outer face
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Refined equi-enumeration

Théoréme (Chapoton and Fusy, unpublished)

Let Fr(t,x;u,v,w) be the generating function of new intervals:

Fr(t, z;u,v,w) = Ztn Z preont(1)—1, coo (1), o1 (1), e11 (D)
n>1 I€Z,

Let Faq(t, x;u, v, w) be the generating function of bipartite planar maps:

Fu (t; u, v, w) — Z m Z moutdeg(M)ublack(M)vwhite(M),wface(M).

n>0 MeM,,

Then we have
wFr = tF .

Proved using recursive decomposition of the two families of objects

A bijective proof ?
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Degree trees

Degree trees : a pair (T,¢)
o T': plane tree,
@ /: node-labeling on T,
such that, for all node v,
@ vis a leaf = £(v) = 0;
e v has children vy, va, ..., v = l(v) =k —a+ ), {(v;) for some
0<a<{(v).

(1, 0)
rlabel(T,¢) =6

rlabel(T,¢) : root label

14 /27
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Degree trees, another version

Edge labeling £5 of (T, £): on the leftmost descending edge of each node
v, with the value subtracted from £(v).
lp = 0 £(v) = # descendants - sum of edge labels below v

Edge labeling ¢4 of (T, ¢)

Three statistics :
o Inode(T,¢): #leaves,
e znode(T,¢): #nodes with £5(e) = 0 on its leftmost edge e,
e pnode(T,¢): #nodes with ¢5(e) # 0 on its leftmost edge e.

15 /27
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Bijections

Chapoton’s new intervals of size n + 1

Degree trees with n edges

co,0(I) = Inode(T, ¢) = white(M) I
co,1(I) = znode(T, ¢) = black(M) <
c1,1(/) = pnode(T, ) = face(M) — 1

rcont(]) = rlabel(T,¢) + 1 = outdeg(M) + 1

Bipartite planar maps with n edges
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From maps to trees : exploration

DFS on edges, clockwise, starting from the root, three rules

edges of M — edges of (T,£). Only on black vertices.
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Generalizing a bijection of Janson and Stefdnsson (2015) on trees
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From maps to trees : exploration
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From maps to trees : exploration
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From maps to trees : exploration
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edges of M — edges of (T,£). Only on black vertices.
oy

O L ]
<
O [ ]
o
o o
O
o
e}
[ J L
M Tpu(M)

Generalizing a bijection of Janson and Stefdnsson (2015) on trees
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Correspondence of statistics

M Tm(M)

e white(M) = Inode(T,¢) : white node > leaves
o face(M) =1+ pnode(T,¢) : inner face +» (A3)
e black(M) = znode(T,¢) : computation

e outdeg(M) = rlabel(T, ) : inner face < (A3)
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From trees to maps: reversed exploration

DFS on edges, counter-clockwise, three rules when exiting an edge

edges of (T,¢) — edges of M.
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From trees to maps: reversed exploration

DFS on edges, counter-clockwise, three rules when exiting an edge

edges of (T,¢) — edges of M.
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From intervals to trees: contacts counting

From I = [P,Q)] to (T,¢) using £4:
o T from @’ such that Q = uQ'd (as V(1) = n)
@ i-th up step of Q < i-th node v; of T in contour (root included)
@ i-th up step of P < upward edge of v; ;1 in T (shift by 1!)
@ /,: rising contacts on sub-paths between matching steps
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From intervals to trees: correctness

Vo (i): # descendants of v;
Vp(i): sum of labels of upward edge of v;11 and edges in subtree

Tamari < positive vertex label

New < label of upward edge of v;41 limited by label of v; 41
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Correspondence of statistics

coo() = Inode(T,¢) : VQ(') =0 < leaf
c11(I) = pnode(T,¢) : Vp(i) # 0 < non-zero label on edge

co1(f

) = znode(T, () : computation with size
rcont(]) = rlabel(T, ¢) : rising contacts not counted in £5
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From trees to intervals: a coloring process

The certificate of a node in (T, ¢) is defined by a coloring process
(reversed prefix order):

@ All nodes are black from the start;
@ v a leaf = the certificate of v is v itself;

@ v not a leaf, with e its leftmost edge = color nodes after v in prefix
order in red, stop up to the (€5(e) + 1)-st black node. The last node
visited is the certificate of v.

Certificate function c of (T,¢): c¢(u) = #nodes whose certificate is u
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From trees to intervals: certificate function

Certificate function c of (T, /): ¢(u) = #nodes whose certificate is u

From (T,¢) to I = [P, Q):
e P: concatenation of ud“® for all v in prefix order;
e Q: u@'d with Q' obtained from the contour walk of T'.

function ¢
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Recapitulation

Chapoton’s new intervals of size n + 1

Degree trees with n edges

co,0(I) = Inode(T, ¢) = white(M) I
co,1(I) = znode(T, ¢) = black(M) <
c1,1(/) = pnode(T, ) = face(M) — 1

()

rcont(]) = rlabel(T,¢) + 1 = outdeg(M) + 1

Bipartite planar maps with n edges
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What is really happening

Recursive decomposition of the two families of objects (Chapoton and
Fusy, unpublished):

Degree tree is in fact the decomposition tree.
The bijections are all canonical w.r.t. these decompositions.
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Work in progress (?)

S3 symmetry for bipartite maps, how about new intervals?
At least one explained: white <> face < duality of intervals
Relation with 3(0, 1)-trees ? And other objects ?

Recent new direct bijection between degree trees and linear planar
3-connected A-terms (arXiv:2202.03542)

@ Tamari intervals decompose into new intervals. How about maps ?
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At least one explained: white <> face < duality of intervals
Relation with 3(0, 1)-trees ? And other objects ?

Recent new direct bijection between degree trees and linear planar
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@ Tamari intervals decompose into new intervals. How about maps ?

Thank you for listening!
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