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What is this talk about?

A “new method” to get asymptotic behavior of certain recurrences

... without generating function (gasp!)

... illustrated with compacted trees as example

... and some progress for generalization.
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Compacting binary trees

We try to compress a binary tree ...
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... by finding identical sub-trees ...
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Compacting binary trees

The compacted trees are trees with pointers obtained in this way.
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Compacted trees

A compacted tree is a binary tree such that

every leaf (except the first one) is a pointer ...

... towards a node preceding it in postfix order,

and each node has a distinct “decompressed” sub-tree.
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Relaxed trees

A relaxed tree is a binary tree such that

every leaf (except the first one) is a pointer ...

... towards a node preceding it in postfix order,

and each node has a distinct “decompressed” sub-tree.
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What we know, and what we want to know

(Flajolet, Sipala, Steyaert 1990)

Linear algorithm to “compactify” a binary tree of size n
Average size of the compacted tree : O(n/ log n)

(Genitrini, Gittenberger, Kauers, Wallner 2019)
n nodes, with right height ≤ k

Relaxed trees :

γkn!

(
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))n
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And without any restrictions?
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Our result

cn : the number of compacted trees with n nodes

rn : the number of relaxed trees with n nodes

Theorem (Elvey Price, F., Wallner 2021)

When n → ∞, we have

cn = Θ
(

n!4ne3a1n
1/3

n3/4
)

, rn = Θ
(

n!4ne3a1n
1/3

n

)

.

Here, a1 is the largest root of the Airy function Ai(x), solution of

Ai′′(x) = xAi(x) with Ai(x) → 0 when x → +∞.

We don’t have the multiplicative constant !

Stretched exponential: e3a1n
1/3

Probability for a relaxed tree of size n to be compacted : Θ(n−1/4).
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How do we do that ?

From Geek3 at Wikimedia Commons, CC-BY 3.0

Bijection with decorated Dyck paths

Recurrence with two parameters

Heuristics for typical behaviors

Truncation of the heuristics ⇒ proof of the bounds

Solely based on the recurrence, the method is relatively simple.
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Encoding by decorated Dyck paths (relaxed version)

First we deal with relaxed trees:

7

5

2

6

4

31
1

12

1

5 3

1

1 2 1

5 3

From relaxed tree to decorated Dyck paths:

Label the nodes in postfix order, detach the pointers

Draw the Dyck path : → for pointer, ↑ for finishing a node

Put pointer labels on horizontal steps
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A recurrence for relaxed trees

Weight m+ 1 for step → on height m.

1

2 2 2

5 5

(n,m)weight m+ 1
weight 1

(n,m)

Proposition

Let rn,m be the weighted sum of paths ending at (n,m). Then

rn,m = (m+ 1)rn−1,m + rn,m−1, for n ≥ m ≥ 1,

rn,m = 0, for n < m,

rn,0 = 1, for n ≥ 0.

The number of relaxed trees with n nodes is rn,n.
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A transformation

Change of coordinates: (n,m) → (n+m,n−m)

We take dn+m,n−m = rn,m/n!, as labeled structure.

(n,m)
weight n−m+2

n+m

weight 1
(n,m)

Recurrence :

dn,m =
n−m+ 2

n+m
dn−1,m−1 + dn−1,m+1

The number of size n relaxed trees: rn = n!d2n,0.
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Some observations

dn,m =
n−m+ 2

n+m
dn−1,m−1 + dn−1,m+1

Recurrence ⇒ diff. eq. in two variables, hard to solve.

Numerical observations :

d2n,0 = Θ
(

4nρn
1/3

n
)

4n from Dyck paths.

Why a stretched exponential?

A higher up step has a lower weight!
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A first heuristics

Consider Dyck paths of length 2n and maximal height ≤ nα, α < 1/2.

Proposition (Kousha 2012)

A uniformly random path has height nα (α < 1/2) with probability

log(P[height ≤ nα]) ∼ −π2n1−2α

Weight of a typical up step:

Θ(n)−Θ(nα)

Θ(n) + Θ(nα)
= 1−Θ(nα−1).

Typically Θ(n) such steps, thus a total weight

(

1−Θ(nα−1)
)Θ(n)

= exp (−Θ(nα)) .

Total contribution

exp
(

−Θ(nα)−Θ(n1−2α)
)

,

maximized at α = 1/3, giving a stretched exponential exp(−Θ(n1/3)).
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The correct scaling

Too heuristic... But this shows that the correct height is n1/3!

Ansatz :

dn,m ∼ h(n)f(n−1/3(m+ 1)),

s(n) =
h(n)

h(n− 1)
= 2 + cn−2/3 +O(n−1).

h(n) : general growth in n, around 2nρn
1/3

for some ρ

f(x) : scaling with typical height n1/3

Suppose that m = κn1/3 − 1.

Ansatz + recurrence :

f(κ)s(n) =
n− κn1/3 + 1

n+ κn1/3 − 1
f

(

κn1/3 − 2

(n− 1)1/3

)

+ f

(

κn1/3

(n− 1)1/3

)

.

Approximately,

0 = (c+ 2κ)f(κ)− f ′′(κ) +O(n−1/3).
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The first estimation

0 = (c+ 2κ)f(κ)− f ′′(κ) +O(n−1/3).

Roughly the equation of the Airy function !

As f(κ) → 0 for κ → ∞, we have

f(κ) ≈ bAi

(

c+ 2κ

22/3

)

.

f(κ) → 0 for κ → 0 ⇒ c = 22/3a1.

Asymptotic behavior of Ai(x) near x → a1 implies

rn = n!d2n,0 = n!4n exp
(

3a1n
1/3 + . . .

)

.
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Refined heuristics

Ansatz of order 2 :

dn,m ∼ h(n)
(

f(n−1/3(m+ 1)) + n−1/3g(n−1/3(m+ 1))
)

,

s(n) = 2 + cn−2/3 + dn−1 +O(n−4/3).

We get the polynomial term:

rn = n!d2n,0 ≈ n!4n exp
(

3a1n
1/3

)

n.

Ansatz in general :

dn,m ≈ h(n)

k
∑

j=0

fj(n
−1/3(m+ 1))n−j/3,

s(n) = 2 + γ2n
−2/3 + γ3n

−1 + . . .+ γkn
−k/3 + o(n−k/3).

A truncation suffices, but still heuristics.
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Sandwiching the asymptotics

If there are positive (sn)n≥1 and (Xn,m)n≥m≥0 such that

Xn,msn ≤
n−m+ 2

n+m
Xn−1,m−1 +Xn−1,m+1,

for all m for large enough n.

Let hn =
∏n

i=1 sn, then Xn,mhn ≤ b0dn,m for some constant b0.

Lower bound!

Reversing the inequality give an upper bound!
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Lower bound - ansatz and expansion

We take

Xn,m =

(

1−
2m2

3n
+

m

2n

)

Ai

(

a1 +
21/3(m+ 1)

n1/3

)

,

sn = 2 +
22/3a1
n2/3

+
8

3n
−

1

n7/6
.

The difference is

Pn,m = −Xn,msn +
n−m+ 2

n+m
Xn−1,m−1 +Xn−1,m+1.

Only need to prove Pn,m ≥ 0 for m < n2/3−ε. The other zone negligible.

By substitution and asymptotic expansion near n, we have

Pn,m = p0(n,m)Ai(α) + p1(n,m)Ai′(α), with α = a1 +
21/3m

n1/3
.

p0(n,m), p1(n,m): series in n−1/6 with polynomial coeffs in m.
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Lower bound - Newton polygon

Pn,m = Ai(α)

(

1

n7/6
−

25/3a1m

3n5/3
−

41m2

9n2
−

28/3a1m
3

3n8/3
−
34m4

9n3
+ . . .

)

+

Ai′(α)

(

21/3

n3/2
−

8a1m

9n2
− 19

21/3m2

9n7/3
−
213/3m3

9n7/3
+ . . .

)

.
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Lower bound - case analysis

Pn,m = Ai(α)

(

1

n7/6
−

25/3a1m

3n5/3
−

41m2

9n2
−

28/3a1m
3

3n8/3
−
34m4

9n3
+ . . .

)

+

Ai′(α)

(

21/3

n3/2
−

8a1m

9n2
− 19

21/3m2

9n7/3
−
213/3m3

9n7/3
+ . . .

)

.

m ≤ x0(n/2)
1/3, where Ai′(a1 + x) changes sign,

x0(n/2)
1/3 < m ≤ n7/18,

n7/18 < m < n2/3−ε.

All cases are positive using properties of the Airy function.
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Upper bound

It is the same, with a different ansatz :

X̂n,m =

(

1−
2m2

3n
+

m

2n
+

3m4

10n2

)

Ai

(

a1 +
21/3(m+ 1)

n1/3

)

,

ŝn = 2 +
22/3a1
n2/3

+
8

3n
+

1

n7/6
.

Yet another case analysis ...

rn = Θ
(

n!4ne3a1n
1/3

n
)

.
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Cherry lemma

On compacted trees:

Lemma

For a relaxed tree T , if no cherry reproduces a node that has

appeared, then T is compacted.

T not compacted ⇒ two nodes with the same decompressed trees

The same holds for their children.

Descend until reaching a cherry
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Encoding by decorated Dyck paths (compacted version)

Cherry lemma ⇒ avoid certain

1

2 2 2

5 5

(n,m)

remove (m− 1) possibilities

(n,m)weight m+ 1
weight 1

(n,m)

Proposition

Let en,m be the number of “strict” decorated paths to (n,m). Then

en,m = (m+ 1)en−1,m + en,m−1 − (m− 1)en−2,m−1, for n ≥ m ≥ 1.

The number of compacted trees with n nodes is cn = en,n.
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Compacted trees

Recurrence for compacted trees:

en,m =
n−m+ 2

n+m
en−1,m−1+en−1,m+1−

2(n−m− 2)

(n+m)(n+m− 2)
en−3,m−1.

Negative terms ...

Sandwich it by two positive recurrences.

With two appropriate Ansätze, we have

cn = Θ
(

n!4ne3a1n
1/3

n3/4
)

.
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A change in the polynomial factor

Ansatz for lower bound :

X̂n,m =

(

1−
2m2

3n
+

m

4n

)

Ai

(

a1 +
21/3(m+ 1)

n1/3

)

,

ŝn = 2 +
22/3a1
n2/3

+
13

6n
−

1

n7/6
.

The only difference in ŝn ⇒ change the polynomial factor
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An application on automata

Theorem (Elvey Price, F., Wallner 2020)

The number m2,n of minimal automata for finite languages in A = {a, b}
with n states is

m2,n = Θ
(

n!8ne3a1n
1/3

n7/8
)

.

Similar “compression”: minimal automata as compressed trie

Encoding by decorated Dyck paths, similar recurrence

A “cherry lemma”

Exactly the same method, can do any fixed alphabet size
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Summing up

What is good:

Using only a (quite simple) recurrence;

Without looking at the generating function;

Relatively simple, so possible to generalize.

Sometimes negative terms are not a problem.

Still need work :

Which type of recurrence? Which type of diff. eq.?

We still need to start from some heuristics...

And we miss the multiplicative constant.

Already some other applications!

Michael Fuchs, Guan-Ru Yu, Louxin Zhang, On the Asymptotic Growth

of the Number of Tree-Child Networks, European J. Combin., 2021.

Yu-Sheng Chang, Michael Fuchs, Hexuan Liu, Michael Wallner, Guan-Ru
Yu, Enumerative and Distributional Results for d-combining Tree-Child

Networks, arXiv:2209.03850, 2022.
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Ongoing work

With Baptiste Louf, we are trying to apply the method to maps.

Classification of “linearly rational up-step” recurrences:

degenerated or trivial,

stretched exponential ρn
1/3

,

macroscopic limit,

... maybe more?

General theorem for stretched exponential other than the Airy type

Whittaker type: ρn
1/2

,

... and further types like ρ
n

p
p+2

.

Any recurrences in two parameters for asymptotics?
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Ongoing work

With Baptiste Louf, we are trying to apply the method to maps.

Classification of “linearly rational up-step” recurrences:

degenerated or trivial,

stretched exponential ρn
1/3

,

macroscopic limit,

... maybe more?

General theorem for stretched exponential other than the Airy type

Whittaker type: ρn
1/2

,

... and further types like ρ
n

p
p+2

.

Any recurrences in two parameters for asymptotics?

Thank you for your attention!
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Automata

Automata

a

b

a

b

b

a

b

b

a

a

a

b
ab

Deterministic automaton Q on alphabet A:

States and transitions,

Initial state q0 and some final states,

Recognizing w ⇔ the walk from q0 reading w arrives at a final state.

Example: aab recognized, but aaba not.
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Automata

Minimal automata of a finite language

A language = a set of words ⇒ a unique minimal automaton

An automaton is

accessible: all states reachable from the initial one,

acyclic: no oriented cycle,

reduced: no redundant state for language recognition.

These three conditions ⇔ minimal automaton of some finite language

Question : How many such automata with n states?

Quite “compacted trees”!
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Automata

Minimize a trie

ba

ba

a

a

a a

a

a

a b

b

b

b

b

b

b

Take a trie and compactify it ...
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b

b

b

b

... with sub-trees with identical coloring ...
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... while exhausting all possibilities ...
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Automata

Minimize a trie

b
a

a

a

a a

a

b

b

b

b

b

a

b

a b

b

a

b

b

a

a

a
b

a

b

... and we get a minimal automaton. > Back <
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