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What is this talk about?

A “new method” to get asymptotic behavior of certain recurrences
. without generating function (gasp!/)

. illustrated with compacted trees as example

e 6 6 o

. and some progress for generalization.
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Compacting binary trees

We try to compress a binary tree ...
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... by finding identical sub-trees ...
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. and storing them only once ...
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Compacting binary trees

The compacted trees are trees with pointers obtained in this way.
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Compacted trees

A compacted tree is a binary tree such that
@ every leaf (except the first one) is a pointer ...
@ ... towards a node preceding it in postfix order,

@ and each node has a distinct “decompressed” sub-tree.
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Relaxed trees

A relaxed tree is a binary tree such that
@ every leaf (except the first one) is a pointer ...
@ ... towards a node preceding it in postfix order,

o and-each-node-has-a-distinct—decompressed—sub-tree:

5/28



Introduction Compacted trees Weighted Dyck paths Heuristics Bounds Summing up
o [e]ele] lele} 0000 0000 0000000000 [e]e]

What we know, and what we want to know

o (Flajolet, Sipala, Steyaert 1990)

o Linear algorithm to “compactify” a binary tree of size n
o Average size of the compacted tree : O(n/logn)

o (Genitrini, Gittenberger, Kauers, Wallner 2019)
n nodes, with right height < k&

o Relaxed trees :
Yin! <4cos (ﬁ)) n k2
e compacted trees :

T R == B € il == ) by Gy
ven! | 4 cos Te3 n (#Fs)

And without any restrictions?
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Our result

@ ¢, : the number of compacted trees with n nodes

@ 7, : the number of relaxed trees with n nodes

Theorem (Elvey Price, F., Wallner 2021)

When n — oo, we have

1/3 1/3
cp =0 (n!4”63‘“" n3/4) , rn =0 (n!4”63“1" n) .

Here, a; is the largest root of the Airy function Ai(x), solution of
Ai"(z) = zAi(z) with Ai(z) — 0 when x — +o0.

We don't have the multiplicative constant !

Stretched exponential: e3¢17'*

Probability for a relaxed tree of size n to be compacted : ©(n~'/4).
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How do we do that 7

0.5

—0.5
-10 -8 -6 —4 -2 0 2 4

From Geek3 at Wikimedia Commons, CC-BY 3.0

@ Bijection with decorated Dyck paths

@ Recurrence with two parameters

@ Heuristics for typical behaviors

@ Truncation of the heuristics = proof of the bounds

Solely based on the recurrence, the method is relatively simple.
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Encoding by decorated Dyck paths (relaxed version)

First we deal with relaxed trees:

7
7
7
£ .
K
7z
P

From relaxed tree to decorated Dyck paths:
@ Label the nodes in postfix order, detach the pointers
@ Draw the Dyck path : — for pointer, 1 for finishing a node

@ Put pointer labels on horizontal steps
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A recurrence for relaxed trees

Weight m + 1 for step — on height m.

’
s
7

545

weight m + 1 e—e(n,m)

. (n,m)
5 9 9 weight II

Let 7, be the weighted sum of paths ending at (n,m). Then

Tn,m = (m + 1)Tn—1,m + Tn,m—1, forn >m > 1a
Tnm = 0, forn < m,
Trno =1, for n > 0.

The number of relaxed trees with n nodes is 1y, .
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A transformation

Change of coordinates: (n,m) — (n+m,n —m)

We take dytm n—m = Tn,m/n!, as labeled structure.

Z weight 1 \
’ (n,m) (n,m)

Z weight nomt2 /

Recurrence :

dn,m -

n—m+ 2

dn—l m—1 + dn—l m+1
n+m ’ ’

The number of size n relaxed trees: 7, = nlda, .
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Some observations

n—m-+2
dn,m - mdn—l,m—l + dn—l,m+1

Recurrence = diff. eq. in two variables, hard to solve.

Numerical observations :
1/3
d2n,0 =0 (4npn ’I”L)

@ 4™ from Dyck paths.
@ Why a stretched exponential?

A higher up step has a lower weight!
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A first heuristics

Consider Dyck paths of length 2n and maximal height < n®, o < 1/2.

Proposition (Kousha 2012)

A uniformly random path has height n® (« < 1/2) with probability

log(P[height < n®]) ~ —mw2n!=2®

Weight of a typical up step:
O(n) — 6(n%)

— L —1-0((n*".
o o L o0

Typically ©(n) such steps, thus a total weight

(1 — @(no‘fl))

Total contribution

oM = exp (-0(n%).

exp (76(710‘) - @(nk?o‘)) ,

maximized at a = 1/3, giving a stretched exponential exp(—0(n'/3)).

13/28



Introduction Compacted trees Weighted Dyck paths Heuristics Bounds Summing up
o 000000 0000 [e] lele) 0000000000 e]e]

The correct scaling
Too heuristic... But this shows that the correct height is n!/3!
Ansatz:
dn,m ~ h(n)f(nil/?)(m + 1))7

=2+en 2B 1 0m™).

@ h(n) : general growth in n, around 2”p"1/3 for some p

o f(z) : scaling with typical height n'/3
Suppose that m = kn'/3 — 1.

Ansatz + recurrence :
n—rnt/34+1 knl/3 —2 knt/3
f(k)s(n) = 75—/ 7)) T s )
n+rnt/3—17 \(n—-1)Y (n—1)Y/

Approximately,

0= (c+26)f(r) = f"(x) + O(n~/?),
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The first estimation

0= (c+26)f(k) — f"(K) + O(n'/3).
Roughly the equation of the Airy function !

As f(k) — 0 for kK — oo, we have

f(k) =~ bAi <62—2/23ﬁ>

k) = 0 for k = 0= ¢ = 22/3q,.
f(K)

Asymptotic behavior of Ai(x) near z — a; implies

rp, = nldap o = nld" exp <3a1n1/3 + .. ) .

Summing up
e]e]
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Refined heuristics

Ansatz of order 2 :
Qo ~ h(0) (£ (m 4 1)) 4+ 07 g0 3 (m 4 1)),
s(n) =2+ cen 23 4 dnt + O(n=43).
We get the polynomial term:
Ty, = nldap o = nld" exp (3a1n1/3> n

Ansatz in general :

Zf 3 (m 4 1)),

2/3

s(n) = 2+72n +ysn 4 TR o(nTR/3),

A truncation suffices, but still heuristics.
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Sandwiching the asymptotics

If there are positive ($p,)n>1 and (X, m)n>m>0 such that

n—m-+2

Xnomsn <
n,mSn n+m

Xn—l,m—l + Xn—l,m+1y

for all m for large enough n.
Let h,, = H?:l S, then X, ,h,, < bod,, ., for some constant bg.
Lower bound!

Reversing the inequality give an upper bound!

Summing up
e]e]
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Lower bound - ansatz and expansion

We take
2m?  m) . 21/3(m 4 1)
Xn,m: <1—3n+2n>A1<a1+nl/3>7
22/3q; 8 1
Sn=2+ o5 t3- T
The difference is
n—m-+2
Pn,m = _Xn,msn + Wanl,mfl + Xn717m+1'

Only need to prove P, ,,, > 0 for m < n?/37¢. The other zone negligible.

By substitution and asymptotic expansion near n, we have

' . ] 21/3m
Pan = poln, m)Ai() + pa(n, m)AY (0), with o = a; + =

po(n,m), p1(n,m): series in n~1/6 with polynomial coeffs in m.
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Lower bound - Newton polygon

Py = Ai(a) ( I 25/3a1m 3 41m? 3 28/3a1m3_34r7?,4
o n7/6 3nb5/3 9In2 3n8/3 In3
Ao (21/3 8am 21/3m2_213/3m3 ) |

n3/2  9n?2 In7/3 In7/3
0 1 2 3 T4 5 0 1 2 3 4 5

Summing up
e]e]

)

7
Slope: - —
ope: - &

: —smpc:—% i

Slope: -1

.2
Slope: -

Slope: -~
ope: - 7

Slope: -1
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Lower bound - case analysis

. 1 25/3aqym  41m?2  283aqym3  34m?
P, = Ai(a) - — - - -
’ n7/6 3n5/3 9n2 3n8/3 On3
, 21/3 8a1m 21/3m2 213/3m3
Ai'(« . - - -
n3/2 9n? In7/3 In7/3

o m < x(n/2)"/?, where Ai'(a; + x) changes sign,
o x9(n/2)}3 <m < n7/18,
o n'/1® < m < n?/3-e,

All cases are positive using properties of the Airy function.

Summing up

[e]e]
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Upper bound

It is the same, with a different ansatz:

N 2m?  m  3m? 21/3(m + 1)
Xn m = 1—— a_ —— | Ai - 172 |>»
’ ( 3n * 2n N 1077,2> ' (al * ni/3 >
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Cherry lemma

On compacted trees:

For a relaxed tree T, if no cherry »Q\ reproduces a node that has
appeared, then T is compacted.

T not compacted = two nodes with the same decompressed trees
The same holds for their children.

Descend until reaching a cherry
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Encoding by decorated Dyck paths (compacted version)

Cherry lemma »Q\ = avoid certain ._._I

o
ot

¥ weight m + 1 e—e(n,m) . (n,m)
weight 1I

5 9 9 I(n., m)

remove (m — 1) possibilities

Proposition

Let ey, be the number of “strict” decorated paths to (n,m). Then
€n,m = (m + 1)en71,m + €nm—1 — (Tn/ - 1)677,727777,717 forn >m > 1.

The number of compacted trees with n nodes is ¢, = ep .
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Compacted trees

Recurrence for compacted trees:

n—m+2 n 2(n—m —2)
0 €fn—1m-— €n—1,m -
L=t Y o m) (n 4+ m — 2)

En,m = €n—3,m—1-

n-+m

Negative terms ...
Sandwich it by two positive recurrences.

With two appropriate Ansatze, we have

1/3 .
cp =0 (n!4"63“1” n‘i/j‘) .
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A change in the polynomial factor

Ansatz for lower bound :

5 2m?  m 21/3(m 4 1)
Xn m=|1—-— — ] Ai 173 |>
’ ( 3n * 4n> ' (al + nl/3 >
22/3 1 1
NN
n2/3 6n n7/6

The only difference in §,, = change the polynomial factor
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An application on automata

Theorem (Elvey Price, F., Wallner 2020)

The number ms.,, of minimal automata for finite languages in A = {a, b}

with n states is s
ma, = © (n!8"e3“1" n7/8) :

@ Similar “compression”: minimal automata as compressed trie
@ Encoding by decorated Dyck paths, similar recurrence

e A “cherry lemma"

@ Exactly the same method, can do any fixed alphabet size
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Summing up

What is good:
@ Using only a (quite simple) recurrence;
@ Without looking at the generating function;
@ Relatively simple, so possible to generalize.
@ Sometimes negative terms are not a problem.
Still need work :
@ Which type of recurrence? Which type of diff. eq.?
@ We still need to start from some heuristics...
@ And we miss the multiplicative constant.

Already some other applications!

Michael Fuchs, Guan-Ru Yu, Louxin Zhang, On the Asymptotic Growth
of the Number of Tree-Child Networks, European J. Combin., 2021.

Yu-Sheng Chang, Michael Fuchs, Hexuan Liu, Michael Wallner, Guan-Ru
Yu, Enumerative and Distributional Results for d-combining Tree-Child
Networks, arXiv:2209.03850, 2022.

27/28



Introduction Compacted trees Weighted Dyck paths Heuristics Bounds Summing up
o] 000000 0000 0000 0000000000 oce

Ongoing work

o With Baptiste Louf, we are trying to apply the method to maps.
o Classification of “linearly rational up-step” recurrences:
o degenerated or trivial,

. 1/3
stretched exponential p™ ",
e macroscopic limit,

e ... maybe more?

@ General theorem for stretched exponential other than the Airy type
o Whittaker type: p”l/Q,

D

p+2

o ... and further types like p"

Any recurrences in two parameters for asymptotics?
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Ongoing work

o With Baptiste Louf, we are trying to apply the method to maps.
o Classification of “linearly rational up-step” recurrences:
o degenerated or trivial,

. 1/3
stretched exponential p™ ",
e macroscopic limit,

e ... maybe more?

@ General theorem for stretched exponential other than the Airy type
o Whittaker type: p"l/Q,

P
p+2

o ... and further types like p"

Any recurrences in two parameters for asymptotics?
Thank you for your attention!
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Automata

Deterministic automaton @ on alphabet A:
@ States and transitions,
@ Initial state gy and some final states,
@ Recognizing w < the walk from ¢g reading w arrives at a final state.

Example: aab recognized, but aaba not.
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Minimal automata of a finite language

A language = a set of words = a unique minimal automaton

An automaton is
@ accessible: all states reachable from the initial one,
@ acyclic: no oriented cycle,
@ reduced: no redundant state for language recognition.
These three conditions < minimal automaton of some finite language

Question : How many such automata with n states?

Quite “compacted trees”!
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Minimize a trie

Take a trie and compactify it ...
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Minimize a trie

.. and we get a minimal automaton. > Back <
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