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Two problems in extremal combinatorics

Sunflower-free set problem

Let U be a finite set with n = |U |. Three subsets A,B,C of U form a
sunflower if A ∩B = B ∩ C = C ∩A. What is the size of the largest
subset family of U that has no sunflower?

Cap set problem

Three vectors a, b, c ∈ Fn3 form a progression of length 3 if a+ b+ c = 0.
What is the cardinal of the largest cap set (set of vectors avoiding such
progressions) in Fn3 ?
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Naslund–Sawin bound on sunflower-free set

Theorem (Naslund–Sawin 2016)

Let F be a sunflower-free family of {1, 2, . . . , n}. Then

|F| ≤ 3(n+ 1)
∑
k≤n/3

(
n

k

)
=
(

3 · 2−2/3
)n

eo(n).

Idea: A notion called slice rank, first used implicitly by Croot–Lev–Pach
(2016) on progression-free sets in Zn4 .

First result that breaks 2neo(n)!
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A polynomial model for the sunflower-free set

Let U = {1, 2, . . . , n}, and v1, . . . , vn be the canonical base of Fn3 . For
A ⊆ U , we define vA =

∑
i∈A vi.

Given a polynomial P (X1, . . . , Xn) and a vector u =
∑n
i=1 xivi ∈ Fn3 ,

we define P (u) = P (x1, . . . , xn).

Proposition

Let A,B,C be three sets without one set being the proper subset of
another. The sets A,B,C form a sunflower or A = B = C iff
P (vA, vB , vC) = 1, with

P (X1, . . . , Xn, Y1, . . . , Yn, Z1, . . . , Zn) =

n∏
i=1

(2− (Xi + Yi + Zi)).

Proof: Since no set is a proper subset of the other, w.l.o.g., we only need
to avoid i ∈ (A∩B) \C, which means xi = yi = 1, zi = 0, which implies
xi + yi + zi − 2 = 0.
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Polynomial as tensor

A polynomial P (X1, . . . , Xn, Y1, . . . , Yn, Z1, . . . , Zn) in F3

⇔

A tensor T in Fn3 ⊗ Fn3 ⊗ Fn3 with T (u, v, w) = P (u, v, w)

Let F be a sunflower-free family in U , and TF the sub-tensor of T with
coordinates restricted to all vA with A ∈ F .

Proposition

TF is a diagonal tensor, that is, TF (u, v, w) = 1 iff u = v = w.

Idea: Upper bound on “big diagonals” ⇒ upper bound on sunflower-free
set.

We want some notion of rank to capture the size of “big diagonals”.
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Slice rank of a function

Let A be a finite set. A function S : A⊗A⊗A→ F is a slice if it has
one of the following forms:

S(u, v, w) = f(u)g(v, w) or f(v)g(u,w) or f(w)g(u, v).

The slice rank of a function F : A⊗A⊗A→ F, denoted by sr(F ), is
the minimum number of slices needed to sum to F .

Property: Let TA : A⊗A⊗A→ F, and TB its restriction on
B ⊗B ⊗B with B ⊆ A. Then sr(TB) ≤ sr(TA).

Lemma (Special case of Tao (2016))

The slice rank of the function F (u, v, w) =
∑
a∈A caδa(u)δa(v)δa(w) is

the number of non-zero coefficients ca ∈ F.

Proof: delayed.
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Slice rank of the sunflower polynomial

P (X,Y , Z) =

n∏
i=1

(2− (Xi + Yi + Zi)).

For a monomial Xa1
1 · · ·Xan

n Y a11 · · ·Y ann Za11 · · ·Zann in P (X,Y , Z), we
have

∑n
i=1 ai +

∑n
i=1 bi +

∑n
i=1 ci ≤ n. One of the total powers of X,

Y and Z must be ≤ n/3.

P (X,Y , Z) =
∑

a1+···+an≤n/3

Xa1
1 · · ·Xan

n Pa1,...,an(Y , Z) + · · · .

Thus we have (since all ai ≤ 1)

sr(P ) ≤ 3
∑
k≤n/3

(
n

k

)
.



Motivation Introduction Bounds Applications Discussion

Proof of upper bound

Let F be a sunflower-free family, with F =
⋃
`≥0 F` the partition by

number of elements. Sets in F` are never proper subset of each other.

Let A` = {vA | A ∈ F`}. The function P is diagonal on A`, thus
|F`| = srA`

(P ) ≤ sr(P ).

We thus have

|F| ≤ 3(n+ 1)
∑
k≤n/3

(
n

k

)
=
(

3 · 2−2/3
)n

eo(n).
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New bound on cap set problem

Polynomial:

P (X,Y , Z) =

n∏
i=1

(1− (Xi + Yi + Zi)
2).

Theorem (Ellenberg–Gijswijt (2016))

The size of a cap set in Fn3 is o(2.756n).

General result for any finite field. Kleinberg–Sawin–Speyer gave a
concrete construction on a lower bound that matches within a
subexponential factor.
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A general strategy

Given a problem concerning avoiding some structure.

1 Construct a polynomial P whose zeros are exactly on “everything
equal” or “things forming the structure”, which is a product of the
same polynomial on different sets of variables in many cases;

2 The function P restricted to an avoiding family F will then be
diagonal;

3 Compute the slice rank of P , which is an upper bound of the size of
F ;

4 Hopefully this bound will be a breakthrough, or not.

Can we know the power of the method?
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Slice rank for tensors

We consider tensors in V1 ⊗ V2 ⊗ · · · ⊗ Vk. We define in the natural way
the jth tensor product

⊗j : Vj ⊗
⊗

1≤i≤k,i 6=j

Vi →
⊗

1≤i≤k

Vi.

A slice is any element of the form vj ⊗j v 6=j for any j. The slice rank of
a tensor T is the minimum number of slices that sum to T .

Example: For V1 (resp. V2, V3) the space of polynomials of Xi (resp.
Yi, Zi) in F, the slice rank of tensors in V1 ⊗ V2 ⊗ V3 is the slice rank of
polynomials.

Property: Let T be a tensor in V1 ⊗ V2 ⊗ · · · ⊗ Vk and T ′ a sub-tensor
of T . Then sr(T ′) ≤ sr(T ).
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Slice rank of a polynomial and its value tensor

Let P be a polynomial in a finite field F with k sets of n variables. P is a
tensor in V1 ⊗ · · · ⊗ Vk, where Vi is spanned by monomials in the ith set
of variable.

Let TP be the value tensor of P in (Fn)
⊗k defined by

TP =
∑

v1,...,vk∈Fn

P (v1, . . . , vk)v1 ⊗ · · · ⊗ vk.

Proposition

We have sr(P ) = sr(TP ).

Proof: Equivalence on slices.
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Slice rank and diagonal

We now consider tensors of the form V ⊗k. Let S be a basis of V .

Lemma (Special case of Tao (2016))

The slice rank of the tensor T =
∑
a∈S caa

⊗k, denoted by sr(F ), is the
number of non-zero coefficients ca ∈ F.

Proof: Again delayed.

For S ⊆ V k structures to avoid (e.g. sunflowers), suppose we have a
polynomial P in F with non-zero values only on u1 = · · · = uk or S.

An avoiding family F ⊆ V gives a sub-tensor TP |F⊗k that is a diagonal.

We thus have |F| = sr(TP |F⊗k) ≤ sr(TP ) = sr(P ).

Upper bound on sr(P ) ⇒ upper bound on F .
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Slice rank (dual version)

Let T be a tensor in V = V1 ⊗ V2 ⊗ · · · ⊗ Vk. Let Wi be the dual space
of Vi, with the canonical pairing 〈·, ·〉i. Let W = W1 ⊗ · · · ⊗Wk, and we
define the pairing

〈w1 ⊗ · · · ⊗ wk, v1 ⊗ · · · ⊗ vk〉 =

k∏
i=1

〈wi, vi〉i.

Proposition

We have sr(T ) ≤ r iff there are sub-spaces WT
i for all i such that the

co-dimensions of WT
i for all i sum to r, and that 〈·, v〉 is zero on⊗k

i=1W
T
i .

Proof: There must be a component that annihilates the pairing.
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Projections and upper bound

We fix a basis Si for each Vi. We define πi(s1 ⊗ · · · ⊗ sk) = si for all vi
in Si.

Proposition

Let T be a tensor in V1 ⊗ · · · ⊗ Vk, and Γ its support w.r.t. (Si)1≤i≤k.
We have

sr(T ) ≤ min
Γ=Γ1∪···∪Γk

k∑
i=1

|πi(Γi)|.

Proof: Decompose by the vector obtained after projection:

T =

k∑
i=1

∑
(s1⊗···⊗sk)∈Γi

c∗s1 ⊗ · · · ⊗ sk

=

k∑
i=1

∑
si∈πi(Γi)

c∗si ⊗i vsi,6=i.

Each summand is a slice.
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Lower bound

We suppose that, for each Si, we have a total order ≤i. They induce a
partial order on vectors s1 ⊗ · · · ⊗ sk for si ∈ Si.

Proposition

Let T be a tensor in V1 ⊗ · · · ⊗ Vk, Γ its support w.r.t. (Si)1≤i≤k, and Γ′

the set of maximal elements in Γ. We have

sr(T ) ≥ min
Γ′=Γ′1∪···∪Γ′k

k∑
i=1

|πi(Γ′i)|.

Remark: sr(T ) does not depend on basis.

We only need to show that there is a covering Γ′1, . . . ,Γ
′
k of Γ′ such that

sr(T ) ≥
∑k
i=1 |πi(Γ′i)|.
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Proof using the dual definition

Suppose that Si = {si,1 ≤ · · · ≤ si,di}, with di = dim(Vi). Let s∗i,j be
the dual of si,j in Wi.

Consider WT = WT
1 ⊗ · · · ⊗WT

k that annihilates T on the pairing 〈·, ·〉.
There is a basis (wi,j)1≤j≤ei of WT

i in a row-echelon form:

wi,1=s∗i,t1 + · · ·+ ∗s∗i,t2 + · · ·+ ∗s∗i,tei + · · ·
wi,2= s∗i,t2 + · · ·+ ∗s∗i,tei + · · ·

...
wi,ei= s∗i,tei

+ · · · .

Let S′i = {si,t1 , . . . , si,tei}. We claim that v = s′1 ⊗ · · · ⊗ s′k with s′i ∈ S′i
for all i is not in Γ′.

Suppose the contrary. By maximality of elements in Γ′, all s†1 ⊗ · · · ⊗ s
†
k

with s†i ≥ s′i for all i are not in Γ, except for v itself.

Then 〈v, T 〉 6= 0 by row-echelon form.
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Proof using the dual definition (cont’d)

Any v = s′1 ⊗ · · · ⊗ s′k with s′i ∈ S′i for all i is not in Γ′.

We now take the covering Γ′i = {s1 ⊗ · · · ⊗ sk | si /∈ S′i}. We have
πi(Γ

′
i) = di − ei, which is also the co-dimension of WT

i .

Therefore, for all annihilator WT , there is a covering Γ′1, . . . ,Γ
′
k of Γ′

such that
k∑
i=1

codim(WT
i ) ≤

k∑
i=1

|πi(Γ′i)|.

We conclude by the dual definition of slice rank.
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Corollary on diagonal tensor

We consider diagonal tensors in V ⊗k over a field F, with S a basis of V .

Corollary

Let T =
∑
a∈S caa

⊗k. Then sr(T ) is the number of non-zero coefficients

ca. In particular, for T =
∑
a∈S a

⊗k, we have sr(T ) = |S|.

Proof: Consider a total order ≤S on S, and we form a partial order by
taking ≤S on all components except the last, which has the reversed
total order. Then the diagonal is an anti-chain without overlapping
elements in projections.
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Slice rank of tensor powers

Recall that many problems lead to polynomials that are product of the
same polynomial on different set of variables, which leads to consider the
slice rank of tensor powers.

Given a tensor T in V1 ⊗ · · ·Vk, with Si a basis of Vk, we want to
compute asymptotically sr(T⊗n) for T⊗n in
(V1 ⊗ · · · ⊗ Vk)

⊗n ∼= V ⊗n1 ⊗ · · · ⊗ V ⊗nk .

We suppose that all Si come with a total order ≤i. We denote by Γ the
support of T w.r.t. all Si, and Γ′ the set of maximal elements of Γ.
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Upper and lower bounds

Proposition

For n→∞, we have

exp(n(H ′ + o(1))) ≤ sr(T⊗n) ≤ exp(n(H + o(1))),

where

H = sup
X

min(h(π1(X)), . . . , h(πk(X))),

H ′ = sup
X′

min(h(π1(X ′)), . . . , h(πk(X ′))),

with X (resp. X ′) a probability distribution on Γ (resp. Γ′), and h(·) the
entropy function.

Sawin and Tao also provided some criteria for the maximizing distribution
X.
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A sketch of proof

We only need to show for any Γ that

min
Γ⊗n=Γn,1∪···∪Γn,k

k∑
i=1

|πn,i(Γn,i)| = exp(n(H + o(1))).

By compacity, we can take X that reaches the sup H.

≥: consider vectors in Γ⊗n that are “ε-close” to X, there are roughly
exp(n(H + o(1))) such vectors, and at least one partition contains 1/k
of them.

≤: we can cover Γ by O(exp(o(n)) “ε-close” balls centered at some X.
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Sunflower: bounds

We recall that the “sunflower polynomial” is 2−X − Y − Z in F3. We
now consider the polynomial space.

We have

Γ = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 0)},
Γ′ = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.

A maximizing distribution for both is
X = 1

3 (1, 0, 0) + 1
3 (0, 1, 0) + 1

3 (0, 0, 1), which leads to

H =
1

3
log(3) +

2

3
log(3/2) = log(3 · 2−2/3).

This also shows that we cannot do better (sr(T⊗n) = exp(nH + o(n))).
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Capset: bounds

We recall that the “cap set polynomial” is (1− (X + Y + Z)2) in F3.

Reason: Cap set condition on a coordinate is that X + Y + Z = 0.

We have

Γ = {(2, 0, 0), (0, 2, 0), (0, 0, 2), (1, 1, 0), (1, 0, 1), (0, 1, 1), (0, 0, 0)},
Γ′ = {(2, 0, 0), (0, 2, 0), (0, 0, 2), (1, 1, 0), (1, 0, 1), (0, 1, 1)}.

A maximizing distribution should take the form

X = α((2, 0, 0)+(0, 2, 0)+(0, 0, 2))+β((1, 1, 0), (1, 0, 1), (0, 1, 1))+γ(0, 0, 0).

By maximizing the corresponding H, we have the result, which has
γ = 0. It means that we cannot do better (sr(T⊗n) = exp(nH + o(n))).
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Limitation of the polynomial method

Proposition

Let k ≥ 8, and G a finite abelian group. Let F be any field, and
V1 = · · · = Vk the space of functions from G to F.
Let F be any F-valued function that is zero only on k-progressions or on
the diagonal. Then sr(F ) = |G|.

Proof ideas: first reduce the problem to the cyclic group Z/nZ, then
show an ordering that makes every constant progression a maximal
element (thus in Γ′).

Ordering: (≤,≤,≤,≥,≤,≥,≥,≥).
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Change of basis

We consider the polynomial P = 1 + (1 + Z)(X + Y ) in F2.

Meaning: Three sets A,B,C such that A∆B ⊆ C.

Γ = {(1, 0, 0), (0, 1, 0), (1, 0, 1), (0, 1, 1), (0, 0, 0)}

X = 1
2 ((1, 0, 0), (0, 1, 1)) maximized H = log(2).

But a change of variable Z ← 1 + Z gives Q = 1 +XZ + Y Z, with
entropy H = log(3 · 2−2/3).



Motivation Introduction Bounds Applications Discussion

Discussion

Observations:

The lower bounds are limits of the method, and does not give
concrete construction on original problems.

Not limited to sub-tensors with only zeros outside the diagonal.

The bounds does not depend on degree, but on the monomials in
the defining polynomial.

Further directions:

More applications?

Synergies with other methods?

Use the fact that slice rank is basis-independent?
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