Aspects énumératifs et bijectifs des cartes combinatoires

Wenjie Fang, IRIF et LaBRI sous la direction de Guillaume Chapuy et Mireille Bousquet-Mélou

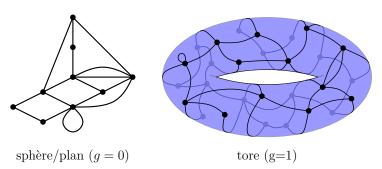
11 octobre 2016, Université Paris Diderot

Plan

- Introduction
- 2 Relation de quadrangulation généralisée aux constellations
- 3 Énumération des constellations par la méthode de série
- 4 Lien bijectif avec les intervalles de Tamari généralisés
- Perspective

Cartes combinatoires

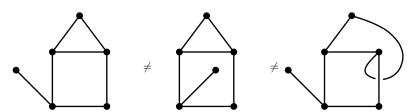
Une **carte** = un plongement d'un graphe connexe G dans une surface $\mathbb S$ (orientable) dont toutes les faces (conn. comp. de $\mathbb S\setminus G$) sont des disques



genre de la carte = genre de la surface

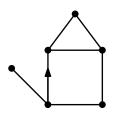
Cartes combinatoires (suite)

L'ordre des arêtes autour d'un sommet est important.



Cartes enracinées

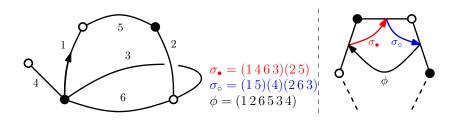
On enracine les cartes pour briser les symétries : distinguer une arête (la racine) et l'orienter. face racine (face extérieure) = la face à gauche de la racine



Désormais on se concentre sur les cartes enracinées.

Carte bipartie et système de rotation

Carte bipartie : sommets proprement bicoloriés



Système de rotation : triplet transitif (=connexe) $(\sigma_{\bullet}, \sigma_{\circ}, \phi)$, avec $\sigma_{\bullet}\sigma_{\circ}\phi = \mathrm{id}$

Cycles des permutations = étiquettes des arêtes en sens direct autour de

- Sommets noirs (resp. blanc) pour σ_{\bullet} (resp. σ_{\circ})
- Faces pour ϕ

Factorisations plus longues?

Les cartes biparties correspondent aux factorisations transitives de la forme :

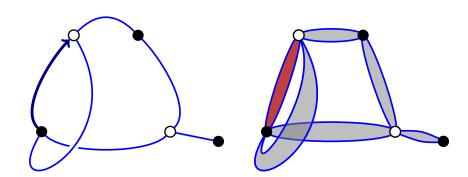
$$\sigma_{\bullet}\sigma_{\circ}\phi = id.$$

Existe-il un modèle de cartes qui correspond aux factorisations transitives de la forme :

$$\sigma_1 \sigma_2 \cdots \sigma_m \phi = id$$
?

La réponse : oui, les constellations ! (cf. Lando-Zvonkine 2004, Bousquet-Mélou-Schaeffer 2000, Bouttier-Di Francesco-Guitter 2004)

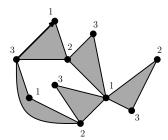
Carte bipartie "épaissie"



Constellations

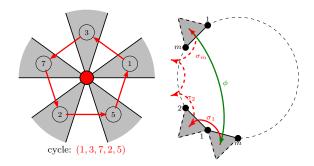
Une m-constellation est une carte avec

- les faces bicoloriées en noir (hyperarêtes) et blanc (hyperfaces);
- ullet les hyperarêtes de degré m, les hyperfaces de degré divisible par m;
- les sommets portant m couleurs $(1, 2, \ldots, m)$;
- les sommets adjacents à un hyperarête portant les couleurs de 1 à m en sens direct.



La version sans couleur sur les sommets est appelée une m-hypercarte.

Systèmes de rotation des constellations



$$\sigma_1 \sigma_2 \cdots \sigma_m \phi = id$$

Des familles de cartes

- cartes biparties
- constellations
- triangulations, quadrangulations
- cartes non-séparables
- ...

Un peu d'historique

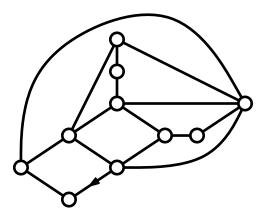
- Une série d'articles de Tutte (1962–1963)
 qui ouvre l'étude énumérative des cartes
- Intégrales matricielles (Brézin-Itzykson-Parisi-Zuber 1978)
 qui relie les cartes à la physique quantique
- Arbres bourgeonnants (Bousquet-Mélou-Schaeffer 2000) et mobiles (Bouttier-Di Francesco-Guitter 2004)
 - qui ouvrent l'étude bijective des cartes, puis des cartes aléatoires
- Lien entre les cartes et la hiérarchie KP (Goulden–Jackson 2008) qui renouvelle le lien avec les représentations de S_n
- Récurrence topologique (Eynard-Orantin 2009), inspirée par les intégrales matricielles
 - qui donne un outil puissant pour l'énumération des cartes

Beaucoup de méthodes et de liens!

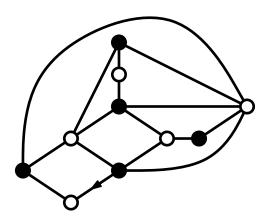
Caractères de S_n

Fonction génératrice

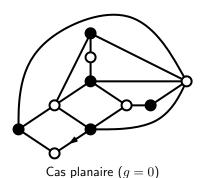
Une quadrangulation planaire



... est toujours bipartie.



Ce n'est plus vrai en genre supérieur.





Cas d'un tore (g=1)

Relation des quadrangulations

On note $Q_n^{(g)}$ (resp. $B_n^{(g,k)}$) le nombre de quadrangulations (resp. biparties avec des sommets blancs marqués) avec

- n le nombre d'arêtes,
- g le genre,
- k le nombre de sommets blancs marqués.

Théorème (La relation de quadrangulation (Jackson et Visentin, 1990))

On a la relation suivante :

$$Q_n^{(g)} = 2^{2g} B_n^{(g,0)} + 2^{2g-2} B_n^{(g-1,2)} + \dots + 2^0 B_n^{(0,2g)}$$

Dans le cas planaire, la relation est réduite à

$$Q_n^{(0)} = B_n^{(0,0)}$$
.

Pas encore de preuve bijective!

Lien entre constellations et hypercartes

On note $H_{n,m}^{(g)}$ (resp. $C_{n,m}^{(g,a_1,\dots,a_{m-1})}$) le nombre de m-hypercartes (resp. m-constellations avec sommets marqués) avec

- n le nombre d'hyperarêtes,
- g le genre,
- a_i le nombre de sommets marqués de couleur i, pour $i \neq m$.

Théorème (Résultat principal)

Les nombres des constellations et des hypercartes sont reliés par la relation suivante :

$$H_{n,m}^{(g)} = \sum_{i=0}^{g} m^{2g-2i} \sum_{a_1 + \dots + a_{m-1} = 2i} c_{a_1,\dots,a_{m-1}}^{(m)} C_{n,m}^{(g-i,a_1,\dots,a_{m-1})},$$

Les coefficients sont des entiers positifs explicites.

Coefficients en forme explicite

Théorème (Résultat principal, cas m=3,4, coefficients explicites)

$$H_{n,3}^{(g)} = \sum_{i=0}^{g} 3^{2g-2i} \sum_{\ell=0}^{2i} \frac{2 \cdot 2^{\ell} + (-1)^{\ell}}{3} C_{n,3}^{(g-i,\ell,2i-\ell)},$$

$$H_{n,4}^{(g)} = \sum_{i=0}^g 4^{2g-2i} \sum_{\substack{\ell_1,\ell_2 \geq 0 \\ \ell_1 + \ell_2 \leq 2i}} \frac{2^{\ell_2+1} (3^{\ell_1} + (-1)^{\ell_1})}{4} C_{n,4}^{(g-i,\ell_1,\ell_2,2i-\ell_1-\ell_2)}.$$

Les systèmes de rotation

Le type cyclique d'une permutation σ est la liste décroissante des longueurs de tous les cycles de σ .

Modèle	Groupe	Factorisation
m-hypercarte avec n hyperarêtes	S_{mn} (arêtes)	$\sigma_{ullet}\sigma_{\circ}\phi=id$ avec σ_{ullet} de type $[m^n]$ and σ_{\circ} of type $m\mu$
m-constellation avec n hyperarêtes	S_n (hyperarêtes)	$\sigma_1\sigma_2\cdots\sigma_m\phi=id$

lci, $m\mu$ est obtenu en multipliant tous les entiers de μ par m.

Compter avec les caractères

Le nombre de ces factorisations s'exprime bien avec les caractères ! χ^{θ}_{λ} est le caractère de S_n indicé par θ évalué en λ . C'est un entier.

Théorème (Formule de Frobenius)

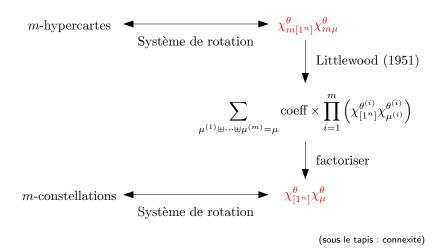
Le nombre de factorisations $\sigma_{\bullet}\sigma_{\circ}\phi=\mathrm{id}_{mn}$ de type m-hypercarte dans S_{mn} est

$$\sum_{\lambda \vdash mn, \mu \vdash n} \frac{((mn)!)^2}{z_\lambda z_{[m^n]} z_{m\mu}} \sum_{\theta \vdash mn} \chi_{m[1^n]}^{\theta} \chi_{m\mu}^{\theta} \frac{\chi_{\lambda}^{\theta}}{\chi_{[1^{mn}]}^{\theta}}.$$

Le nombre de factorisations $\sigma_1 \cdots \sigma_m \phi = \mathrm{id}_n$ de type m-constellation dans S_n est

$$\sum_{\substack{\lambda^{(1)},...,\lambda^{(m)},\mu\vdash n}} \frac{(n!)^m}{z_{\mu} \prod_{i=1}^m z_{\lambda^{(i)}}} \sum_{\theta\vdash n} \chi_{[1^n]}^{\theta} \chi_{\mu}^{\theta} \prod_{i=1}^m \frac{\chi_{\lambda^{(i)}}^{\theta}}{\chi_{[1^n]}^{\theta}}.$$

Un schéma de preuve



Le fait que les coefficients sont dans \mathbb{N}_+ prend un peu plus de travail.

Énumération des constellations planaires et en genre supérieur

(avec Guillaume Chapuy)

Fonction génératrice

Équation de Tutte

Méthode différentielle-catalytique

Récurrence topologique

Paramétrisation remarquable

 $M_g(t)$: série génératrice des cartes en genre g, avec t qui marque la taille (le nombre d'arêtes)

• Tutte (1963) : Soit z défini implicitement par $z=1+3tz^2$,

$$M_0(t) = \frac{1}{3}z(4-z).$$

• Bender–Canfield (1991) : Pour tout g,

$$M_g(t) = \frac{P_g(z)}{z^a(z-2)^b(z+2)^c(2z+1)^d}.$$

lci $P_g(z)$ est un polynôme en z.

Rationnel avec une bonne paramétrisation!

Et si on contrôle aussi les faces?

Approche par séries génératrices

 $F_{g,m}(t,x,\underline{m p})$: série des m-constellations en genre g, avec les poids

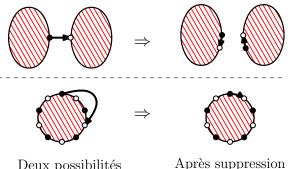
- *t* : hyperarêtes
- x : degré de l'hyperface racine, divisé par m
- ullet p_k : hyperfaces non-racine de degré mk

On autorise la constellation vide ici (poids 1).

Approche par séries génératrices : fabriquer une équation à partir d'une décomposition récursive, puis la résoudre.

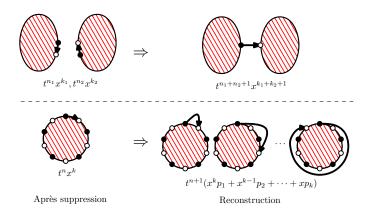
Équation de Tutte pour les cartes biparties planaires

Idée : que se passe-t-il quand on supprime la racine?



Deux possibilités

Équation de Tutte pour les cartes biparties planaires (suite)



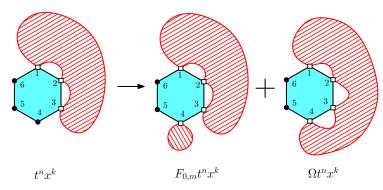
La série $F_{0,2}(t,x,p)$ vérifie

$$F_{0,2} = 1 + tx \left(F_{0,2}^2 + \Omega F_{0,2} \right),\,$$

où $\forall k \in \mathbb{N}, \Omega x^k = p_1 x^{k-1} + p_2 x^{k-2} + \dots + p_k.$

L'équation pour les constellations planaires

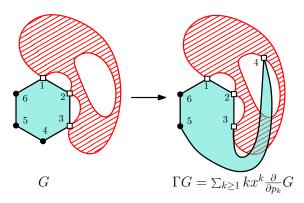
Deux façons d'attacher un coin de l'hyperarête racine



Donc

$$F_{0,m} = 1 + xt(F_{0,m} + \Omega)^m(1).$$

Cas supplémentaire en genre supérieur



L'équation devient

$$F_{g,m} = xt[y^g] \left(\sum_{h=0}^g y^h F_{h,m} + \Omega + y\Gamma \right)^m (1).$$

Exemples

$$\begin{split} F_{g,2} &= xt \left(\sum_{g_1 + g_2 = g} F_{g_1,2} F_{g_2,2} + \Omega F_{g,2} + \Gamma F_{g-1,2} \right), \\ F_{g,3} &= xt \left(\sum_{g_1 + g_2 + g_3 = g} F_{g_1,3} F_{g_2,3} F_{g_3,3} + (\Omega \Gamma + \Gamma \Omega) F_{g-1,3} + \Gamma \Gamma F_{g-2,3} \right. \\ &+ \sum_{g_1 + g_2 = g} \left(\Omega (F_{g_1,3} F_{g_2,3}) + F_{g_1,3} (\Omega F_{g_2,3}) \right) \\ &+ \sum_{g_1 + g_2 = g-1} \left(\Gamma (F_{g_1,3} F_{g_2,3}) + F_{g_1,3} (\Gamma F_{g_2,3}) \right) + \Omega \Omega F_{g,3} \right). \end{split}$$

Nos résultats : cas q = 0 et m général

Le phénomène survit!

Paramétrisation $t, x \leftrightarrow z, u$ (reliée aux mobiles) :

$$t = z \left(1 + \sum_{k \ge 1} {mk - 1 \choose k} p_k z^k \right)^{-(m-1)}, \ x = u(1 + uz)^{-m}$$

$\mathsf{Th}m{\acute{e}or\grave{e}me}$ $ig(\mathsf{Bijection}$ (Bousquet-Mélou–Schaeffer; Bouttier–Di Francesco–Guitter)ig)

$$F_{0,m}(x,t) = (1+zu) \left(1 - \sum_{j\geq 1} p_j z^j \sum_{l=1}^{(m-1)j-1} z^l u^l \binom{mj-1}{j+l} \right).$$

Presque un polynôme...

Nous avons maintenant une preuve à partir de l'équation fonctionnelle.

Idée (Bousquet-Mélou-Chapuy-Préville-Ratelle) : introduire une variable supplémentaire pour éliminer l'itération arbitraire de l'opérateur

Variables "grecques"

Pour exprimer les séries en genre supérieur, on introduit les "variables" suivantes:

$$\eta = \sum_{k \ge 1} (k-1) {2k-1 \choose k} p_k z^k,
\eta_i = \sum_{k \ge 1} (k-1) k^i {2k-1 \choose k} p_k z^k,
\zeta = \sum_{k \ge 1} \frac{k-1}{2k-1} {2k-1 \choose k} p_k z^k,
\zeta_i = \sum_{k \ge 1} \frac{(-2)^{i+1} k(k-1) \cdots (k-i)}{(2k-1)(2k-3) \cdots (2k-2i-1)} {2k-1 \choose k} p_k z^k.$$

Elles sont algébriquement indépendantes.

Nos résultats : cas $g \ge 1$ et m = 2 (biparti)

Théorème (Chapuy et W.F.)

La série $F_{g,2}$ des 2-constellations en genre $g \ge 1$ est une somme finie de fractions rationnelles à coefficients rationnels de la forme

$$\frac{\eta_{a_1}\cdots\eta_{a_k}\zeta_{b_1}\cdots\zeta_{b_\ell}}{(1-\eta)^a(1+\zeta)^b(1\pm uz)^c}$$

De plus, dans $F_{g,2}$ n'apparaissent que les η_i avec $i \leq 3g-1$ et les ζ_i avec $i \leq g-1$.

Exemple:

$$F_{1,2} \in \mathbb{Q}(uz, \eta, \zeta, \eta_1)$$

$$F_{2,2} \in \mathbb{Q}(uz, \eta, \zeta, \eta_1, \eta_2, \eta_3, \eta_4, \zeta_1)$$

Idées empruntées à la récurrence topologique : résidu, symétrie ...

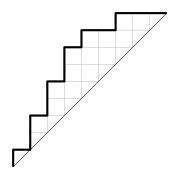
Lien bijectif entre les intervalles de Tamari généralisés et les cartes planaires non-séparables

(avec Louis-François Préville-Ratelle)

Bijection

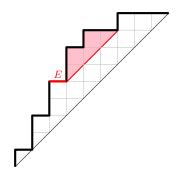
Treillis de Tamari et généralisations

Chemins de Dyck, ...



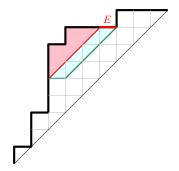
Un **chemin de Dyck** de taille n:n pas Nord(N), n pas Est(E)

Chemins de Dyck, ...



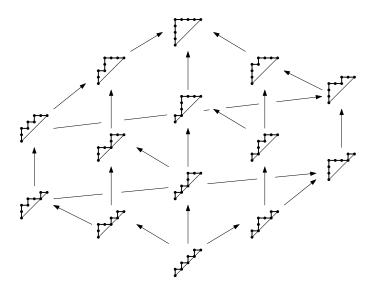
Une relation d'ordre : ...

Chemins de Dyck, ...



Une relation d'ordre : le treillis de Tamari (Huang-Tamari 1972).

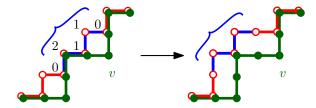
..., le treillis de Tamari, ...



... puis une généralisation

Une droite de pente 1/m comme diagonale \Rightarrow le treillis de m-Tamari (Bergeron 2010)

Pourquoi se limiter à une droite? On peut choisir un chemin arbitraire \boldsymbol{v} comme "diagonale" !



Distance horizontale = # de pas Est avant de dépasser v Préville-Ratelle et Viennot (2014) : **treillis de Tamari généralisé** $\mathrm{Tam}(v)$ de canopée v.

Intervalles et cartes planaires

Intervalle : un couple d'éléments comparables dans l'ordre partiel

Chapoton(2006): # intervalles du treillis de Tamari de taille n =

$$\frac{2}{n(n+1)} \binom{4n+1}{n-1}$$

= # triangulations planaires 3-connexes avec n+3 sommets (Tutte 1963)

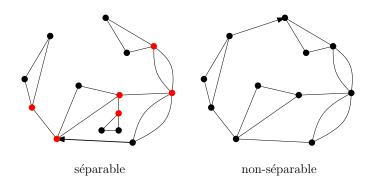
Preuve bijective (Bernardi-Bonichon 2009)

Bousquet-Mélou-Fusy-Préville-Ratelle (2011) : # intervalles du treillis de m-Tamari de taille n=

$$\frac{m+1}{n(mn+1)} \binom{n(m+1)^2 + m}{n-1}$$

Similaire aux formules des cartes planaires!

Cartes planaires non-séparables



Un **sommet d'articulation** coupe la carte en deux ensembles connexes d'arêtes.

Une carte planaire est **non-séparable** si elle n'a pas de sommet d'articulation.

Notre résultat

Théorème (W.F. et Préville-Ratelle)

Il y a une bijection combinatoire entre les intervalles dans $\mathrm{TAM}(v)$ avec v de longueur n et les cartes planaires non-séparables à n+2 arêtes.

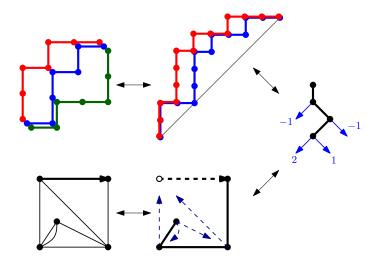
Corollaire

La somme des nombres d'intervalles dans $\mathrm{TAM}(v)$ pour tous les v de longueur n est

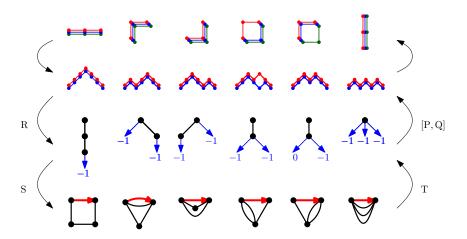
$$\sum_{v \in (N,E)^n} \text{Int}(\text{Tam}(v)) = \frac{2}{(n+1)(n+2)} \binom{3n+3}{n}.$$

Enumération des cartes planaires non-séparables : Tutte (1963)

La bijection



Quelques exemples



Aussi des structures et des statistiques qui se transfèrent ...

Ce que je n'ai pas dit ...

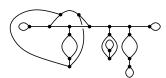
 Énumération asymptotique des graphes cubiques plongeables dans une surface de genre fixée (chapitre 6, travail joint avec Mihyun Kang, Michael Moßhammer, Philip Sprüssel)

Bijection

Graphes aléatoires

Combinatoire analytique

Fonction génératrice



• Interprétation combinatoire de la relation de quadrangulation généralisée ? (ch. 3)

$$H_{n,3}^{(g)} = \sum_{i=0}^{g} 3^{2g-2i} \sum_{l=0}^{2i} \frac{2 \cdot 2^l + (-1)^l}{3} C_{n,3}^{(g-i,l,2i-l)}$$

$$Q_n^{(g)} = 2^{2g} B_n^{(g,0)} + 2^{2g-2} B_n^{(g-1,2)} + \dots + 2^0 B_n^{0,2g}$$

- Interprétation combinatoire de la relation de quadrangulation généralisée ? (ch. 3)
- Le cas général des constellations en genre supérieur? (ch. 4)

$$F_{g,m} = xt[y^g] \left(\sum_{h=0}^g y^h F_{h,m} + \Omega + y\Gamma \right)^m (1)$$

- Interprétation combinatoire de la relation de quadrangulation généralisée ? (ch. 3)
- Le cas général des constellations en genre supérieur? (ch. 4)
- Bijection des intervalles m-Tamari aux cartes? (ch. 5)

$$\frac{m+1}{n(mn+1)} \binom{n(m+1)^2 + m}{n-1}$$

- Interprétation combinatoire de la relation de quadrangulation généralisée? (ch. 3)
- Le cas général des constellations en genre supérieur? (ch. 4)
- Bijection des intervalles m-Tamari aux cartes? (ch. 5)
- etc ...

La "grande" question :

Comment interagissent la représentation graphique (bijection, équation de Tutte) et la représentation algébrique (factorisation, hierarchie KP) des cartes?