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Abstract

This thesis deals with the enumerative study of combinatorial maps, and its application
to the enumeration of other combinatorial objects.

Combinatorial maps, or simply maps, form a rich combinatorial model. They have an
intuitive and geometric definition, but are also related to some deep algebraic structures.
For instance, a special type of maps called constellations provides a unifying framework for
some enumeration problems concerning factorizations in the symmetric group. Standing
on a position where many domains meet, maps can be studied using a large variety of
methods, and their enumeration can also help us count other combinatorial objects. This
thesis is a sampling from the rich results and connections in the enumeration of maps.

This thesis is structured into four major parts. The first part, including Chapter 1
and 2, consist of an introduction to the enumerative study of maps. The second part,
Chapter 3 and 4, contains my work in the enumeration of constellations, which are a
special type of maps that can serve as a unifying model of some factorizations of the
identity in the symmetric group. The third part, composed by Chapter 5 and 6, shows
my research on the enumerative link from maps to other combinatorial objects, such as
generalizations of the Tamari lattice and random graphs embeddable onto surfaces. The
last part is the closing chapter, in which the thesis concludes with some perspectives and
future directions in the enumerative study of maps.

We now give a more precise description of the content in each chapter. Chapter 1 is
a brief review of different directions in map enumeration and their relations with other
domains in mathematics. It also includes an overview of tools we can use in map enumer-
ation. Chapter 2 is a technical preliminary that explains, in details and with examples,
the tools we will be using in the later chapters.

In Chapter 3, we will see a simple enumerative relation about constellations, which
generalizes the quadrangulation relation between bipartite maps and general maps first
proved in [96]. It is also a relatively rare occasion to see how we can use characters in the
symmetric group to obtain enumerative results on maps.

In Chapter 4, we will consider the enumeration of constellations in all genera by
writing and solving Tutte equations. The planar case was already solved in [33] via
bijective method, but had resisted being solved using a functional equation approach. We
will revisit the planar case by solving a Tutte equation with a method applied in [30]
to the enumeration of intervals in the m-Tamari lattice. It is also the first appearance
of the mysterious link between planar maps and intervals in the Tamari lattice and its
generalizations, which will be the subject of the next chapter. We will also solve our
functional equation for higher genus g > 0 in the bipartite case. In the solution, we adapt
some ideas from the topological recursion (cf. [63]), a highly convoluted yet powerful
technique to solve problems including map enumeration in higher genus.

In Chapter 5, we will look further at the link between planar maps and intervals in
the Tamari lattice and its generalizations. More precisely, we will establish a bijection



between intervals in generalized Tamari lattices introduced in [123] and non-separable
planar maps. As an application of our bijection, we give an enumeration formula for
intervals in generalized Tamari lattices, which is the same as that of non-separable planar
maps, obtained in [134] by Tutte. We will also discuss other implications of our bijection.

In Chapter 6, we will study the enumeration of cubic graphs embeddable into a surface
with given genus, using existing enumeration results of several types of triangulations.
More precisely, we will be interested in weighted cubic graphs, where loops, single edges
and double edges will receive different weights. Our proof adapts the same basic ideas as
in [44, 11]. With our approach, we are able to give asymptotic enumeration results for
several classes of weighted cubic graphs. This enumeration is motivated by the study of
phase transitions of random graphs embeddable onto surfaces with higher genus, similar
to those in [I02] for planar random graphs.

In Chapter 7, we will conclude by some perspectives and discussions about possible
future research directions in the enumerative study of maps. We start by an overview
of several aspects of map enumeration that are not treated in this thesis, then we will
look at some possible extensions of results presented in previous chapters. Finally, we will
consider a future research direction in map enumeration.



Résumé

Le sujet de cette these est I’étude énumérative des cartes combinatoires et ses applications
a I’énumération d’autres objets combinatoires.

Les cartes combinatoires, aussi appelées simplement « cartes », sont un modele com-
binatoire riche. FElles sont définies d’une maniére intuitive et géométrique, mais elles
sont aussi liées a des structures algébriques plus complexes. Par exemple, ’étude d'une
famille de cartes appelées des « constellations » donne un cadre unifié a plusieurs prob-
lemes d’énumération de factorisations dans le groupe symétrique. A la rencontre de dif-
férents domaines, les cartes peuvent étre analysées par une grande variété de méthodes,
et leur énumération peut aussi nous aider a compter d’autres objets combinatoires. Cette
these présente un ensemble de résultats et de connexions tres riches dans le domaine de
I’énumération des cartes.

Cette these se divise en quatre grandes parties. La premiere partie, qui correspond
aux chapitres 1 et 2, est une introduction a ’étude énumérative des cartes. La deuxiéme
partie, qui correspond aux chapitres 3 et 4, contient mes travaux sur I’énumération des
constellations, qui sont des cartes particulieres présentant un modele unifié de certains
types de factorisation de I'identité dans le groupe symétrique. La troisieme partie, qui cor-
respond aux chapitres 5 et 6, présente ma recherche sur le lien énumératif entre les cartes
et d’autres objets combinatoires, par exemple les généralisations du treillis de Tamari
et les graphes aléatoires qui peuvent étre plongés dans une surface donnée. La derniére
partie correspond au chapitre 7, dans lequel je conclus cette these avec des perspectives
et des directions de recherche dans I'étude énumérative des cartes.

Voici maintenant une description plus précise de chaque chapitre. Le chapitre 1 est
un résumé de différentes directions prises dans I’énumération des cartes et leurs relations
avec d’autres domaines des mathématiques. Il contient également une liste d’outils utilisés
dans I’énumération des cartes. Le chapitre 2 est un préliminaire technique aux chapitres
suivants ; il présente de maniere détaillée les outils utilisés dans ceux-ci, avec des exemples.

Dans le chapitre 3, nous voyons une relation énumérative simple concernant les tri-
angulations. Cette relation généralise la relation des quadrangulations entre les cartes
biparties et les cartes générales, démontrée dans [96]. C’est aussi une occasion relative-
ment rare de voir 'utilisation des caractéres du groupe symétrique dans 1’énumération
des cartes.

Dans le chapitre 4, nous considérons I’énumération des constellations en genre arbi-
traire en écrivant et en résolvant des équations de Tutte. Le cas planaire est résolu dans
[33] avec la méthode bijective, mais pas encore avec la méthode symbolique. On revient
au cas planaire en résolvant une équation de Tutte avec la méthode inventée dans [30]
pour I’énumération des intervalles dans le treillis de m-Tamari. C’est aussi la premiere
apparence du lien entre les cartes planaires et les intervalles dans le treillis de Tamari
et ses généralisations, qui est le sujet du chapitre suivant. Nous résoudrons aussi notre
équation fonctionnelle en genre supérieur g > 0 dans le cas biparti. Pour cette résolution,



nous adaptons quelques idées de la récurrence topologique (cf. [63]), qui est une technique
complexe mais puissante de résolution de divers probléemes, y compris I’énumération des
cartes en genre supérieur.

Dans le chapitre 5, nous examinons le lien entre les cartes planaires et les intervalles
dans le treillis de Tamari et ses généralisations. Plus précisément, nous établions une
bijection entre les intervalles dans les treillis de Tamari généralisés introduit dans [123]
et les cartes planaires non-séparables. En appliquant notre bijection, nous donnons une
formule d’énumération des intervalles dans les treillis de Tamari généralisés, qui est la
méme que celle des cartes planaires non-séparables, obtenue dans [134]. Nous discutons
aussi des autres implications de notre bijection.

Dans le chapitre 6, nous étudions I’énumération des graphes cubiques qui peuvent
étre plongés dans une surface en genre fixé, en utilisant des résultats d’énumération
existants sur plusieurs types de triangulations. Plus précisément, nous examinons les
graphes cubiques pondérés, dans lesquels les boucles, les arétes simples et les arétes dou-
bles recoivent différents poids. Notre preuve est fondée sur les mémes idées de base que
celles de [44, [I1]. Avec notre approche, nous sommes capables de donner des résultats
d’énumération asymptotique pour plusieurs classes de graphes cubiques pondérés. Cette
énumération est motivée par I’étude des transitions de phase dans les cartes aléatoires
qui peuvent étre plongées dans une surface fixée en genre supérieur, qui sont similaires &
celles données dans [102] pour les graphes planaires aléatoires.

Dans le chapitre 7, nous concluons par quelques perspectives et discussions sur les
directions possibles a prendre dans I'avenir de 1’étude énumérative des cartes. Nous com-
mencons par un résumé de certains aspects de I’énumération des cartes qui ne sont pas
traités dans cette these, puis nous examinons quelques extensions possibles de résultats
présentés dans les chapitres précédents. Nous terminons avec une direction de recherche
possible pour I’énumération des cartes.
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Chapter 1

Introduction

In our daily life, a map is something that we use to get directions from one place to
another. It can be seen as a graph, where vertices are roundabouts, crossings and points
of interest, and edges are streets, roads and avenues. We use a map to see by which route
we can get from one point to another. However, a map is more than all these links. At
the corner of a crossing, even if we know the next street to follow, we need to figure out
how streets neighbor one another around the crossing to determine whether to turn left
or right. Therefore, it is also important to know the cyclic order of links around a point.
For direction, these are all we have to know.

When distilled into a mathematical object, the concept of a quotidian map becomes
that of a combinatorial map, the study subject of this thesis. In this thesis, we will
deal with the enumeration of combinatorial maps, that is, counting combinatorial maps
with given properties. We are going to see how to solve various enumeration problems
related to combinatorial maps through some of their interplays with other combinatorial
objects. Due to the so many faces of maps, the landscape that I am going to paint for
the study of maps can only be incomplete, or even ignorant. Nevertheless, I hope that we
will all enjoy this journey to the magnificence of maps.

This chapter will be a brief qualitative survey of what we (or more precisely, I) know
about combinatorial maps and their enumeration. Most precise definitions and technical
details will be delayed to the next chapter.

1.1 The many faces of maps

As many interesting mathematical objects, combinatorial maps have several definitions,
each reveals one of its intriguing aspects. One may guess that they have a geometric and
intuitive definition that gives rise to many beautiful combinatorial bijections with other
important mathematical objects, which then lead to elegant enumerative and probabilistic
results. One may not guess that they also have an algebraic but powerful definition that
makes them a highway interchange between various topics in enumerative and algebraic
combinatorics and even physics. In this section, we will see two definitions of combinatorial
maps and the related connections to other fields of mathematics and physics.

1.1.1 Maps as graph embeddings

We start by the basics. A graph G is composed by a finite set V of vertices and a
finite multiset £ with elements from {{u,v} | u,v € V} of edges, and we write G =

19
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Figure 1.1: Examples of maps

(V, E). Usually we see vertices as points and edges as line segments between two points.
Here multiple edges are allowed since E is a multiset, and edges that link one vertex to
itself (also called loops) are also allowed. The graphs we consider here are called “finite
multigraphs” in the jargon of graph theory. A graph is connected if for every pair of
vertices (u,v) € V2, there is a sequence of edges {ug = u,us}, {us, us}, ..., {up_1,up = v}
that leads from u to v.

Although a graph is inherently a discrete object, it can nevertheless be endowed with a
topological structure by looking at vertices as distinct points and edges as distinct copies
of the real interval [0, 1] with ends identified with points corresponding to their adjacent
vertices. We can then view graphs as topological spaces (and even metric spaces), and it
is now reasonable to talk about how they can be embedded into other topological spaces,
especially surfaces.

In this thesis, by “surfaces” we mean surfaces that are connected, closed and oriented.
A homeomorphism is a bijective and bi-continuous mapping. Since we are looking at
topological spaces, everything is defined up to homeomorphism. There is a well-known
classification of surfaces according to their genus (see [117]), which we describe briefly as
follows. For any integer g = 0, we denote by S, the surface obtained by adding g handles
to the sphere. For example, S; is the torus. Then a surface must be homeomorphic to a
certain S,. In this case, we say that the genus of this surface is g. All surfaces we consider
are thus classified by their genera.

We can now give our first definition of combinatorial maps as embeddings of graphs.

Definition 1.1 (Combinatorial maps). A combinatorial map (or simply map) M is an
embedding (i.e., the image of an injective continuous mapping) of a connected graph G
onto a surface S such that all faces, i.e. connected components of S\M, are topological
disks. If there is an orientation-preserving homeomorphism between two maps, then we
consider these two maps as identical.

Maps naturally inherit all terminologies of graphs, and they also have their own ter-
minologies. The size of a map M is the number of edges of its underlying graph. The
genus g of a map M is the genus of the surface S onto which it embeds. A map is planar
if it is of genus 0, 7.e. it is embedded on the sphere. The name “planar” comes from the
fact that we can draw a planar map on the plane by taking a point in one of the faces
as the point at infinity of the plane. For vertices and faces, their degree is the number of
adjacent edges, counted with multiplicity. Figure shows two examples of maps, the
left one of genus 2, and the right one is planar.

We have the following useful relation named “Euler’s relation” after Euler.
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Figure 1.2: Three different maps with the same underlying graph

Lemma 1.1. For a map of genus g with v vertices, e edges and f faces, we have
v—e+ f=2-2g. (1.1)

This definition of maps as graph embeddings can be seen as an exact translation of
our intuitive concept of “everyday maps”. For a map M, besides its inherited graph struc-
ture, it also has a topological structure from being an embedding, which determines the
cyclic order of edges around each vertex. Since we are only interested in the topological
information around vertices and edges, we assume that nothing with particular topolog-
ical interest happens elsewhere. Therefore, faces should be topologically as mundane as
possible, and the most natural choice is a topological disk.

Remark 1.1. Maps can also be defined as embeddings on surfaces which are not nec-
essarily orientable, such as the Klein bottle. These maps are called non-orientable maps
and they also have interesting connections with other algebraic objects. However, we only
discuss the orientable case in this thesis. Readers interested by non-orientable maps are
referred to [82] [7, 41] for a taste of results in their enumeration.

Due to the extra topological data about how edges neighbor each other around a
vertex, maps with the same graph structure can be different. Figure illustrates such a
situation, where three maps sharing the same graph structure are different and even with
different genus (the first two are planar, and the last is of genus 1).

For the ease of enumeration, we often consider a variant of maps called rooted maps.
There are two equivalent ways to root a map, each practical in different cases. The first
way is to distinguish an edge e = {u, v} and to give it an orientation, for example from u
to v. When the edge e is a loop, we distinguish each end to allow two possible orientations.
The distinguished edge is called the root, and u is called the root vertex. The second way
is to distinguish a corner in the map, where a corner is a pair of neighboring half-edges
around a vertex. A map with n edges has 2n rooting possibilities in either ways. To
show that rooting on edges and on corners are equivalent, for a map rooted at a corner
around a vertex u between two adjacent edges e; and e, in clockwise order, we can re-
root it at the edge ey with u as root vertex, and this procedure gives a bijection between
corner-rooted and edge-rooted maps. The left side of Figure gives an example of the
two ways of rooting. The automorphism group of a rooted map is trivial. To see this,
we can perform a depth-first search on the rooted map starting from the root vertex
along the root, and when a new vertex is discovered, its adjacent edges are visited in
clockwise order. An element in the automorphism group of the rooted map should also be
an automorphism of the spanning tree obtained in our search, conserving for all vertices
the order of adjacent edges. The only automorphism that satisfies this condition is the
identity, which forms a trivial group. This fact makes enumeration easier since we don’t
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Figure 1.3: Rooting and dual of a map

need to factor in extra symmetries that can occur for some unrooted maps. Furthermore,
it is under this convention that maps are the most interesting in the enumerative eyes.
From now on, we will mainly consider rooted maps. In rare occasions where unrooted
maps are considered, such as in Chapter 4, they will be weighted by the inverse of the
size of their automorphism group as a compensation. As a convention, when we draw
a map on the plane, the face that contains the root corner (also called outer face) will
always contain the point at infinity. Alternatively, we can also say that the root is always
adjacent to the outer face and oriented in the clockwise direction along the outer face.

We now present an important involution on maps. For a map M embedded on a
surface S,, we construct its dual denoted by M* as follows: firstly, inside each face f
of M we place a vertex f* (called the dual vertex of f); secondly, for each edge e of M
that borders two (not necessarily distinct) faces fi, fo, we place an edge e* (called the
dual edge of e) between the dual vertices of f; and fy. For the root of the dual map M*,
we take the convention that M* is rooted at the dual corner composed by the dual edges
of the two edges of the marked corner in M. Figure|[1.3|gives an example of a planar map
and its dual. It is clear that a map and its dual have the same genus.

Knowing the basic concepts about maps, we are interested in how maps interacts with
other domains of mathematics.

Since maps are essentially embeddings of graphs, they are also related to topological
graph theory, which is a branch of graph theory that takes an interest in whether and how
a graph can be embedded onto a surface. Using results from topological graph theory, it
is possible to use enumerative results on maps to count the number of graphs that can
be embedded onto a surface of a certain genus ¢g. This was first done in [76] for planar
graphs, then in [I1, [44] and [66] for graphs embeddable on surfaces of higher genera.
Furthermore, topological graph theory is also a source of intriguing questions on maps,
such as the chromatic number of a typical map of given genus (proposed in [44] for graphs)
or the typical face-width of a map of given genus as a function of the size (c¢f. [12] and
[89]), etc.

If we move our eyes from maps to the surface onto which they embed, we can see
maps as “discretizations” of surfaces, each map representing one way to discretize its
embedding surface. It is then natural to ask the following question: what does the “typical
discretization” of a given surface look like when it becomes more and more fine-grained?
To answer this question, we must get into the realm of probability to define the notion
of a random map, which is a probability measure on a given class of maps. An example
of a well-studied random map model is the uniform planar quadrangulation. We can
then ask interesting questions on these random maps, such as the asymptotic behavior of
their radius and how they look like as a metric space. Asymptotic enumeration of maps
plays a crucial role in answering these questions. Up to now, most random map models
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that have been studied are planar. It has been discovered that, for many planar random
map models, when the size n tends to infinity, there is an appropriate scaling (usually
of order n'/*) such that the scaling limit of the random map is a well-defined continuous
object [IT5]. It turns out that this scaling limit is the same for many kinds of random
planar maps. It seems that the scaling limit is universal, because it does not depend on
the precise construction details of random planar maps [109], but rather on the fact that
they are random discretizations of the sphere. This scaling limit is called the Brownian
map, and serves as a model of random surface. The Brownian map provides a vision of
the global structure of very large random planar maps, and its study has attracted many
researchers in probability. There are also some studies on the scaling limit of large maps
of higher genus [89, 1106, 22 [39].

We can also ask another question about random planar maps: how does the neigh-
borhood of the root of a random map look like when the size of the random map tends
to infinity? To answer this question, we need another notion of limit object called the
weak local limit. Such limit objects are studied for several random planar map models,
such as uniform infinite planar triangulation (UIPT, see [6]) and uniform infinite planar
quadrangulation (UIPQ, see [47]). These limit objects, while having an interesting fractal
structure on their own [5], also serve as a random lattice, on which we can study various
stochastic processes such as percolation [5] and random walks [15].

Some theoretical physicists are also interested in random maps as a model of discrete
geometry. This interest is related to the quest for a unified theory of fundamental physics,
which needs a reconciliation between two successful theories in conflict, namely general
relativity and quantum mechanics. Thus comes quantum gravity, a branch of theoretical
physics that attempts to bridge these two theories by quantization of gravity and space-
time. Brownian maps can serve as a model of a “quantized” 2-dimensional space, on
which a quantum gravity theory can be built (see [4]). The use of maps in 2-dimensional
quantum gravity has also been extended to higher dimensions via a generalization of
random maps called “random tensor model” (see [90] 27]).

Other than random maps, maps are also studied in physics for another reason. In
the study of particle physics, we are led to the computation of matriz integrals, which
are integrals over certain kinds of random matrices. These integrals are found to be
expressible as an infinite sum of the weight of all maps of a certain type that depends on
the integrand. Readers are referred to [107] and [62] for introductions. We can regard the
enumeration of planar maps as a way to compute matrix integrals, while techniques once
developed for matrix integrals can be extended and adapted to the enumeration of maps
in general. One notable example is the topological recursion technique invented by Eynard
and Orantin in [64], which was abstracted from techniques for computing expansions of
matrix integrals, and then successfully applied to enumerations of various families of maps
(e.g., [103] on Grothendieck’s dessin d’enfant, also see Eynard’s book [63]).

1.1.2 Polygon gluing and rotation system

We now present another way to define maps by gluing polygons to form a surface. This
definition leads to a deep connection between maps and factorizations in the symmetric
group.

Suppose that we have a finite set of oriented polygons, and we want to “glue up” these
polygons by edges to form a closed compact surface without boundary. To glue polygons,
we pair up and identify edges. There is only one way to glue two edges such that the



24 CHAPTER 1. INTRODUCTION

Figure 1.4: A planar map resulting from the gluing process encoded by (¢, o). Note that
the point at infinity is inside the heptagon.

orientations of polygons are preserved across the border. Since we want no boundary, all
edges have to be paired up. Furthermore, since we only want one surface, there must be
a way to go between any two edges by visiting neighbors in the same polygon and by
going from one edge of a polygon to the other with which it is glued. We thus obtain a
surface with a graph embedded on it formed by vertices and edges of polygons. We call

this process a gluing process.

Definition 1.2 (Combinatorial maps, alternative definition). A combinatorial map is a
surface with a graph embedded resulting from a gluing process, defined up to orientation-
preserving homeomorphism.

This definition, which dates back to Cori [52], is equivalent to our previous definition
of maps as graph embeddings. To see heuristically the equivalence, we first observe that a
gluing process always gives a graph embedded onto a surface whose faces are all polygons,
which are topological disks. Then for a graph embedded onto a surface, its faces all have
finite degree, thus they are polygons, and we can see the embedded graph as a result of
a gluing process of these face-polygons. A detailed proof can be found in Chapter 3.2 of
[117].

There is a way to encode gluing processes using permutations. For such a process with
polygons with a total number 2n of edges, we suppose that each edge receives a distinct
label from 1 to 2n. The set of polygons can thus be encoded by a permutation ¢ in the
symmetric group Ss, in which cycles consist of labels of edges of the same polygon in
clockwise order. Since edges are all matched up by gluing, their matching can be encoded
by a fixed-point-free involution p € Ss,. The fact that the process leads to a connected
surface is expressed by the transitivity of the pair (¢, p). A pair of permutations (¢, p) is
transitive if the orbit of any ¢ from 1 to 2n in the subgroup generated by ¢ and p is the
entire set of integers from 1 to 2n. Such a transitive pair of permutations (¢, p) where
p is a fixed-point-free involution is called a rotation system of general maps. Figure [1.4]
gives an example of a map given by the gluing process encoded by a rotation system. We
take the convention to root the map at the edge with label 1, oriented counter-clockwise
inside its polygon.

In some literature, instead of labeling the two sides of an edge, we cut the edge in half
and label the half-edges. It is easy to see that this alternative labeling gives an equivalent
definition (see, e.g., [96]).
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Figure 1.5: The action of o = p¢ for a rotation system (¢, p)

Every rotation system encodes a gluing process, thus a map. But a map can have
many rotation systems, because rotation systems rely on labeling of edges, but maps
don’t. Every rooted map with n edges corresponds to (2n — 1)! rotation systems, since
labels can be attached to edges arbitrarily, except for the label 1 that indicates the root.
Two rotation systems (¢, p1) and (¢, p2) give the same rooted map if and only if there
exists a permutation 7 € Sy, with 7(1) = 1 such that ¢, = m¢on ™! and p; = mpom L.

Given a rotational system (¢, p), which is also a pair of permutations, it is natural
to look at the product o = p¢. Here we take the convention (p¢)(i) = ¢(p(7)), i.e. we
multiply permutations from left to right. It turns out that the product o encodes how
edges surround vertices. Around a vertex v, the product ¢ permutes labels on the right
side (seen from v) of adjacent edges in counter-clockwise order. Figure provides an
illustration of how this works, and Figure [1.4] provides a concrete example. Therefore,
the lengths of cycles of ¢ and ¢ encode respectively two important statistics of the map:
the degrees of faces and vertices. This fact urges us to tap into the algebraic structure
of the symmetric group for hints to enumerations of maps. Due to the importance of the
product o, we sometimes also write the rotation system (¢, p) as (¢, p, 7).

In this thesis, we will encounter various restricted families or variants of maps, and we
will see how they correspond to different types of rotation systems, all in forms of pairs
or tuples of permutations of the same size. Their definitions follow the same idea as the
type of rotation systems we presented above: since maps are glued up from topologically
trivial polygons, all topological information lies in the local topology around vertices and
edges; thus to encode the whole map, we only need to label some small structures (such
as edges), and then write down how they lie around vertices and edges in the form of
permutations. Later we will see several types of rotation systems for different kinds of
maps, including bipartite maps and constellations (detailed definitions will be given in
the next section).

A bipartite map is a map with a coloring of vertices in black and white such that every
edge is adjacent to two vertices with different colors. A rotation system (o., 0., ¢) for a
bipartite map with n edges is a transitive triple of permutations in S,, (i.e. the group
generated by o,, 0., ¢ acts transitively on all numbers from 1 to n) such that

Oe0.¢ = id,,.

Here, id,, is the neutral element of .S,,. Exact details of how such a rotation system encodes
a bipartite map will be given in Chapter 2.1.2] Therefore, rotation systems for bipartite
maps are exactly transitive factorizations of the identity in the symmetric group into three
elements. Bipartite maps have a generalization called constellations with a parameter m
(or r in some literature, or more scarcely p), whose vertices come in m colors, and whose
rotation systems correspond to transitive factorizations of the identity in the following
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Figure 1.6: An example of a 3-constellation

form:
0109 - O = id,,.

A detailed definition will be given in Chapter 2.1.2] Figure shows an example of a
constellation. Thanks to combinatorial techniques such as bijections [33], 34} [38], charac-
ters [121] and functional equations [32], we are able to enumerate constellations in some
cases, thus also some constellation-type factorizations of the identity.

There are other types of factorizations of the identity that have been studied in dif-
ferent contexts. A transposition is a permutation that exchanges exactly two elements
while keeping others intact. We consider transitive factorizations of the identity in the
following form:

TITo  Tin® = id,,

where all 7; are transpositions and ¢ an arbitrary permutation. These factorizations are
counted by the Hurwitz numbers, which also count branched coverings of the Riemann
sphere (or extended complex plane). These numbers were first studied in the context of
branched coverings by Hurwitz, who also brought the connection with factorizations of the
identity to the sight of combinatorialists [94, [124]. Such factorizations of the identity in-
volving transpositions quickly grabbed the attention of combinatorialists, and much effort
was poured into the enumeration of these objects [85] and their various generalizations
[78, [79]. As part of the effort, researchers proposed map models for these objects [57],
which makes them officially happy members of the map family.

As usual, some theoretical physicists are also attracted to this encoding of maps in
terms of permutations, but for a slightly different reason. It turns out that Hurwitz
numbers and their variants are also related to a type of matrix integral called Harish-
Chandra-Itzykson-Zuber (HCIZ) integrals [80] and to the Gromov-Witten theory [85],
both playing an important role in 2-dimensional quantum gravity. On the other hand,
it has been proved by Goulden and Jackson [84] that the generating functions of general
maps are solutions of a well-studied set of equations called the KP hierarchy, which is a
physical model that falls into the category of integrable systems that is actively studied.
This connection leads physicists to investigate further generalized map models as solutions
to the KP hierarchy and its variant 2-Toda lattice equipped with further structures [119].
Using some equations in the KP hierarchy, Goulden and Jackson [84], and later Carrell
and Chapuy [36], were able to derive simple and elegant recurrences for the number of
triangulations and quadrangulations respectively.

Rotation systems also have a concrete application which we may not expect. In 3D
modeling, the surface of a real-world object is often approximated by a mesh glued up



1.2. TOOLS FOR MAP ENUMERATION 27

of small polygons, which is essentially a map with extra data. Some encodings of these
meshes, such as the quad-edge representation [88], use exactly the same idea of rotation
systems. There are also researches on using enumeration results to design more succinct
map encodings, such as [122], that might have an impact on computer graphics.

1.2 Tools for map enumeration

As shown in the previous section, map enumeration is related to many other interesting
fields and problems, which gives us a strong incentive to count maps. In this section, we
will survey some general tools for both exact and asymptotic map enumeration. Precise
definitions and examples of the tools we need will be given in Chapter 2.

1.2.1 Generating functions

Generating functions are standard tools in enumerative combinatorics. The generating

function Fe(t) of a class C with a size statistics | - | is defined as
Fe(t) =y ¢,
ceC

We assume here that there are finitely many objects with any given size. A more gen-
eral definition of generating functions will be given in the next chapter. To enumerate
objects in C of different sizes, we can translate a decomposition of objects in C into a
functional equation that characterizes F¢, then we can solve for the generating function
which contains all the enumerative information we want. In the seminal series of papers
[132, 131, 133], 134], Tutte applied this method to the enumeration of many classes of pla-
nar maps, and his way of writing functional equations for maps is still actively used today.
Most map enumeration results were first obtained by solving one of these equations.

For instance, consider general planar maps. We start by a simple question: what
would a planar map become if its root edge were removed? We allow the “empty map”
that consists of a single vertex but no edge for the moment. Now, for a planar map with
at least one edge, its root is either a bridge (isthmus) or not. In the case of a bridge, its
removal gives two smaller planar maps with appropriate rooting. Otherwise, its removal
will merge the two adjacent faces, one of them the outer face, and give a new re-rooted
map with one less edge. Figure shows this decomposition by root removal in detail.
By introducing the extra parameter of outer face degree, we are able to write the following
functional equation on the generating functions M (¢, x) of planar maps, where x marks
the degree of the outer face and ¢ marks the number of edges:

M (t,z) — M(t, 1)

M(t,z) =1+ t*M(t,z)* + ta . :
‘I‘_

By solving this equation, Tutte obtained the following simple formula for the number M,
of planar maps with n edges:

M= +215(37:+ 2) (2:> (1.2)

Details of this resolution will be given in the Chapter 2.3.3]as an example of the generating
function method. With the idea of root removal, we can write functional equations for
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Figure 1.7: Planar map decomposition by root removal

other families of planar maps and even maps of higher genus (see, e.g., Chapter 4). These
equations are generally called Tutte equations or cut-and-join equations.

For many families of maps, the Tutte equations often involve, in addition to the size
variable t, an extra variable, dubbed catalytic variable. Many (but not all) Tutte equations
thus fall into the category of polynomial functional equations with one catalytic variable.
Quadratic equations in this category are often solvable by the quadratic method, which
was first proposed by Brown in [35]. This method was then used to enumerate many
families of planar maps. Another method called kernel method has also been used for
linear equations occurring in map enumeration [7]. Later, Bousquet-Mélou and Jehanne
generalized both methods in [32] to a systematic way to solve any polynomial functional
equation with one catalytic variable and confirmed that their solutions are all algebraic
under suitable assumptions. They then applied this method to prove that the generating
function of m-constellation is algebraic, i.e. is a solution of a polynomial equation.

Although powerful, sometimes the quadratic method and its generalization in [32]
cannot deal easily with some map-counting generating functions with further refinements,
such as the exact profile of face degrees for maps of higher genus. Nevertheless, Tutte
equations can be written for such refined generating functions for planar maps and maps
of higher genus, sometimes involving various operators. Examples include the cut-and-
join equations written for Hurwitz numbers by Goulden and Jackson in [83], which they
solved in a guess-and-check manner for the genus 0 case. This approach was then extended
to monotone Hurwitz numbers of genus 0 by Goulden, Guay-Paquet and Novak in [78§].
However, for higher genus, since there was no known explicit formula, the resolution needs
either more involved algebraic tools [85] or a different type of analysis [79]. The topological
recursion method can also be used to solve Tutte equations (also called loop equations in
this context) of many families of maps of all genera, for example bipartite maps with
given face degree profile [103] and even maps (see [63, Chapter 3], unconventionally called
“bipartite maps” therein). It is also possible to write the Tutte equation for maps of higher
genus using multiple catalytic variables, which led Bender and Canfield to the asymptotic
behavior [7] of maps of higher genus, and to prove that the generating functions of these
maps can be expressed as a rational fraction in an explicit algebraic series [§].

Strangely, the generating functions of different families of maps have a lot in common.
For instance, they are often rational functions of a few algebraic series [I0]. Moreover,
Gao showed in [71], [72] [74] that, for many classes M of maps, the number of maps in
M of genus g of size n grows asymptotically as caty 1 (apmn)®9~1/2 when n tends to
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infinity, where caq, Y4 and apq are constants that depend only on the class M, and ¢, a
constant depending only on the genus g but staying the same across different map classes.
Later Chapuy also obtained results of the same form in [38] for some other families of
maps related to constellations. This concordance hints at some kind of universality for
maps. It is worth mentioning that the asymptotic behavior of ¢,, when g tends to infinity,
was determined in [I3] using a recurrence on the number of triangulations obtained from
the KP hierarchy [84], which is essentially an infinite sequence of differential equations
satisfied by the generating functions of maps.

1.2.2 Bijections

Due to the geometric and intuitive definition of maps as graph embeddings and elegant
closed formulas for enumeration, we may imagine that there are many kinds of bijections
that can be used for enumeration. This is indeed the case. Pioneered by Cori and
Vauquelin [54], bijective methods have always been playing an important role in map
enumeration ever since. Bijections also allow us to understand map enumeration results
in a more intuitive way. However, most bijections are for classes of planar maps. For maps
of higher genus, only few bijections are available for enumeration (for instance [46], 41]),
and they are mostly only useful for enumeration in very specific cases. Nevertheless, for
enumeration of planar maps, the bijective method is widely used. We can also discover
deep connections between maps and other combinatorial objects such as permutations
using bijections.

The bijective study of maps is a well-developed field, and there are many types of
bijections relating different classes of maps to various objects, which we could not exhaust.
Therefore, we will just point out two major categories of bijections for map enumeration
in the following. Of course, there is still a vast ocean of map bijections that cannot
be put into any of these categories, but they all contribute towards our combinatorial
understanding of maps.

Blossoming trees In his thesis [127], Schaeffer observed that the number of planar
maps with n edges is closely related to that of binary trees. He defined a type of
binary trees called blossoming trees with an extra blossom on each vertex. Conjugacy
classes of blossoming tress are in bijection with planar 4-valent maps, which are duals
of planar quadrangulations (i.e. maps whose faces are all of degree 4), again in bijection
with general planar maps. He then extended this approach to several other types of maps,
developing a family of bijections. All these blossoming-tree bijections essentially rely on a
breadth-first search on the dual of the map that breaks edges in the original map until what
is left is a tree. Broken edges are then turned into blossoms, and we obtain a blossoming
tree. Figure shows an example of this bijection. A particularly important application
of this approach is to constellations [33], where Bousquet-Mélou and Schaeffer obtained
an explicit enumeration formula for planar constellations. A variant of blossoming trees
also has application in efficient encoding of planar maps [I122]. A unified scheme of various
blossoming-tree bijections on planar maps was given in [I] by Albenque and Poulalhon.

Well-labeled trees Cori and Vauquelin [54] first gave a bijection from planar quad-
rangulations to the so-called well-labeled trees, but in a recursive form. Again in his
thesis, Schaeffer deconvoluted this recursive bijection and found that it can be described
as a set of simple local rules located at each face, depending on the distance of adjacent
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Figure 1.9: An instance of well-labeled tree bijection, with local rules explained

vertices to a distinguished vertex. Figure [1.9 shows an example of this bijection. Later
Bouttier, Di Francesco and Guitter generalized this approach to mobiles for the case of
face-bicolored map, which includes in particular constellations. Miermont also introduced
in [116] a version of the bijection of Cori, Vauquelin and Schaeffer to quadrangulations
of arbitrary genus with multiple distinguished vertices, for the study of random maps of
higher genus. Recently Ambjgrn and Budd [3] found a similar bijection in the sense that
it can also be described in a similar set of simple local rules. Since well-labeled trees
contain the distance information of the original maps, they are particularly suitable for
the study of the limit of large random maps as a metric space, such as in [48] and [116].
A unified scheme of many bijections in this family was given in [2I] by Bernardi and
Fusy. A generalization to quadrangulations of higher genus (orientable or not) based on
a previous generalization by Marcus and Schaeffer (see [46]) was given in [41] by Chapuy
and Dotega, then extended in [23] by Bettinelli to some other classes of maps.

Other than counting, bijective methods can also be used to relate maps to other
combinatorial objects in a way that allows us to transfer enumerative results and structural
properties. Among these bijections, many are based on the notion of orientations. An
ortentation on a map is an assignment of orientation to all edges in the map, and it is used
in many map bijections. Using a special kind of orientation called bipolar orientation, in
[70] Fusy gave several bijections between different classes of planar maps, including non-
separable planar maps and irreducible triangulations. For the connection between maps
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and other combinatorial objects, Bernardi and Bonichon gave in [20] a bijection between
three families of planar triangulations and intervals in three lattices of Catalan objects,
using a notion called Schnyder wood which can be considered as a special orientation of
triangulations. In [26], Bonichon, Bousquet-Mélou and Fusy gave a bijection between
bipolar orientation of planar maps and Baxter permutations. It is worth mentioning that
Bernardi and Fusy also used a generalized version of orientation in the unified scheme of
some well-labeled tree bijections in [21].

1.2.3 Character methods

Since maps can be encoded by permutations whose product is the identity, it is natural to
think of using the representation theory of the symmetric group to count maps. Although
transitive factorizations of the identity cannot be directly counted using characters, we
notice that we can split a general factorization of the identity into a bunch of its transitive
components, which will solve our problem at the generating function level. Details will
be discussed in Chapter and Chapter [2.3.1]

However, although characters of the symmetric group have nice combinatorial inter-
pretations (see, for example, [I36] and [126]), they have a simple formula only in special
cases, which greatly limits their application to map enumeration. A quintessential exam-
ple of such an application is the enumeration of unicellular maps, i.e., maps with only one
face. These maps correspond to factorizations involving a full-cycle permutation, which
are always transitive. We then need to evaluate characters in S,, at the partition (n),
where only characters indexed by a hook-partition (i.e., a partition of the form (n—a, 1%))
can have a non-zero value, which vastly simplifies the computations. Using this approach,
Jackson proved that the number of unicellular bipartite maps on any genus g has a certain
form in [95]. An explicit and refined expression was then given by Goupil and Schaeffer
in [87], which was extended in [I2I] by Poulalhon and Schaeffer to constellations. It is
worth mentioning that there has been an explicit formula [I37] and a nice recurrence [92]
for the number of unicellular maps that were obtained without using characters of the
symmetric group.

It is also possible to obtain enumerative relations between different classes of maps
using characters. In [96], Jackson and Visentin used characters to obtain a simple enumer-
ative relation between general maps of genus g and bipartite quadrangulations with some
marked vertices of genus at most g. This relation is called the guadrangulation relation,
which was then generalized in [97] and [98] to general bipartite maps. Despite its elegant
and innocent appearance, the quadrangulation relation has resisted all attempts of a bi-
jective proof, making itself something that is only achievable using characters. Similarly,
results relying on the KP hierarchy, such as [84] and [36], share the same position.

1.3 A road map of our tour

We have seen many faces of maps and their connections to other fields of study. We
have also cited some powerful enumeration tools for maps that come essentially from the
intuitive definitions and the versatility of maps. But this is just a start of our journey to
the magnificence of maps, a teaser if you will. For interested readers, [107], [29] and [12§]
contain more detailed accounts of the panorama of map enumeration. In the rest of this
thesis, we are going to take a more in-depth tour to the domain of maps, in the prism of
my own research. The rest of this section is a road map of this thesis.
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This chapter and the next one are for preparation. In Chapter 2, we will prepare
ourselves with precise definitions of various objects that we will come across during our
tour. We will also try to wield some tools we will use, such as resolution of functional
equations and analytic methods for asymptotic counting.

In the next two sections, we will see some results on map enumeration, especially
of constellations. As we have mentioned in the previous section, there is an enumera-
tive relation of maps called the quadrangulation relation, proved using characters of the
symmetric group. In Chapter 3, a generalization of the quadrangulation relation will be
presented. This chapter is based on my paper [65], which generalized the character ap-
proach in [96, [97] to constellations and hypermaps. In Chapter 4, we will see how to write
a Tutte equation for constellations and how to solve it in the bipartite case using some
ideas from topological recursion. We then obtain a rationality result for the generating
functions of bipartite maps and the corresponding rotation systems of genus g > 1. This
result is similar to those in [85] for Hurwitz numbers and in [79] for monotone Hurwitz
numbers. It is thus interesting to investigate a unified proof. This chapter is based on a
collaboration article [42] with my advisor Guillaume Chapuy.

The two chapters that follow will concern applications of map enumeration to other
fields. In Chapter 5, we will look at a bijection between non-separable planar maps and
intervals in generalized Tamari lattices, which have their root in algebraic combinatorics.
In the course, we will also give the first combinatorial proof of a theorem concerning self-
dual non-separable planar maps published in [105]. This chapter is partially based on a
collaboration with Louis-Francois Préville-Ratelle [68]. In Chapter 6, we will enumerate
cubic multigraphs embeddable on the surface S, with a fixed genus g. This is done by
taking a detour to the enumeration of various triangulations of higher genus, similar to
the strategy in [44]. This chapter is based on a collaboration with Mihyun Kang, Michael
MoBhammer and Philipp Spriissel [67, [66], which has implications in the study of random
graphs of higher genus.

Finally, in the last chapter, Chapter 7, we will end our tour by some discussions of
possible further developments of previously presented results and map enumeration in
general.



Chapter 2

First steps in map enumeration

To craft a fine work, one must first sharpen the tools. The purpose of this chapter is to
prepare ourselves for our tour in the realm of maps and to get familiar with tools that
we will use. This chapter will be divided into two parts: definitions of classes of maps
and introduction of tools that we will use to enumerate these maps. Readers familiar
with maps, generating functions and/or characters of the symmetric group can skip this
chapter and use it as a reference.

Since the notions we will introduce are so intertwined, it is difficult to streamline all
definitions in a perfect logical order without hurting the presentation. Therefore, some
well-known notions will be used before they are defined, but there will be notices and
directions.

2.1 The many classes of maps

In the previous chapter, we have given two definitions of maps. We will refer to this most
general class of maps as general maps. All classes of maps we will define later can be
considered as sub-classes of general maps. Since we are also going to talk about rotation
systems of maps, which live in the symmetric group S,,, we will assume for the moment
that readers are familiar with permutations, especially their cycle presentation. A detailed
introduction to the symmetric group will be given in Section [2.2]

2.1.1 Maps involving degree and connectivity

Some elementary sub-classes of general maps are defined by properties on their faces.
In terms of polygon gluing process, the degree of a face is the number of edges in the
corresponding polygon before gluing. Therefore, if an edge borders a face f twice, it is
also counted twice in the degree of f. The map on the left side of Figure [2.1| contains two
edges of this type.

We can now define classes of maps using the notion of face degree. A triangulation
is a map whose faces are all of degree 3. A quadrangulation is a map whose faces are all
of degree 4. More generally, a p-angulation is a map whose faces are all of degree p, and
an even map is a map whose faces are all of even degree. Figure [2.1]| shows two planar
triangulations. We further define a subclass of triangulations called simple triangulations,
which are triangulations without loop nor multiple edges. The triangulation on the right
side of Figure [2.1] is simple.

33
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> /A

Figure 2.1: A general planar triangulation and a simple planar triangulation

(a) (b) (c)

Figure 2.2: Some examples of connectivity in maps, with marked bridges and cut vertices

Other than face degree, we can also restrict maps by their connectivity. All maps
are connected, but some maps are more connected than others, in the sense that they
remain connected even if we remove something from them. There are two different notions
of connectivity in graph theory, edge-connectivity and vertex-connectivity, which can be
transplanted directly to maps. A map is k-edge-connected if the map remains connected
after the removal of any k£ — 1 edges. All maps are 1-edge-connected but not necessarily
2-edge-connected. Figure (a) is an example of a map that is not 2-edge-connected.
In this case, an edge whose removal disconnects the map is called a bridge. A map is
k-vertez-connected (or simply k-connected) if, for any partition Fj, Fy of the edge set
E of the map, there are at least k vertices that have adjacent edges both in F; and in
E5. Similarly, all maps are 1-connected but not necessarily 2-connected. A map is called
separable if it is not 2-connected, and non-separable if it is. Figure[2.2(b) is an example of
a separable map. In this case, a vertex v is called a cut vertex if there exists a partition
E1, E5 of the edge set E of the map such that v is the only vertex that has adjacent
edges in both F; and F,. There can be several cut vertices in the same separable map.
Figure (c) is an example of a non-separable map, which is also 2-edge-connected, but
is neither 3-connected nor 3-edge-connected.

2.1.2 Bipartite maps and constellations

We can also define classes of maps using vertex colorings, yet another notion from graph
theory. Let M be a map and V' the set of its vertices. A wertex coloring (or simply a
coloring) is a function f from V to a color set C. The color set is usually a finite set of
natural numbers {1,2, ..., ¢}, in this case the coloring is also called a c-coloring. A vertex
coloring f of the map M is proper if for any edge e = {v1,v9} in M we have f(vq) # f(vg).
A map is said to be bipartite if it has a proper 2-coloring. Colors in a bipartite map is
colloquially referred to as black and white. By convention, the root vertex of a bipartite
map is always black, which fixes the 2-coloring. Figure [2.3] shows a bipartite map of
genus 1. Notice that, although all bipartite maps are even maps, the converse is not true
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oo = (1463)(25)
oo = (15)(4)(263)
¢=(126534)

Figure 2.3: A bipartite map and its rotation system

for even maps of higher genus. For instance, by identifying opposite sides of an m x n
rectangular grid, we obtain an even map (in fact a quadrangulation) on the torus, but it
is bipartite if and only if both m and n are even.

There is a particularly simple way to define rotation systems for bipartite maps. Let
M be a bipartite map with n edges, with distinct labels from 1 to n. The root receives
the label 1 by convention. Since M is bipartite, each edge is adjacent to exactly one black
vertex and one white vertex. For each black vertex, we read out the labels of its adjacent
edges in counter-clockwise order to obtain a cycle, and all these cycles form a permutation
0. since each edge belongs to exactly one cycle. We similarly define o, for white vertices.
For faces, we also consider adjacent edges in counter-clockwise order, or equivalently, we
can imagine that we are taking a tour inside a face while keeping adjacent edges always
on the right. By only picking edges that point from black vertices to white ones in the
tour inside a face, we construct a cycle for each face, and all cycles for faces form a
permutation ¢. We say that the rotation system for the bipartite map M is (0., 0o, @),
which is a transitive triple of permutations in 5, that gives the following factorization of
the identity:

Oe0.¢ = id,,.

We recall that we multiply permutations from left to right. Figure [2.3] shows an example
of such a rotation system, and an illustration on why a rotation system of a bipartite map
gives a factorization of the identity. We see that each bipartite map with n edges gives
(n — 1)! different rotation systems by changing labeling.

We observe that rotation systems of bipartite maps give transitive factorizations of
the identity of length 3. It is natural to try to find a class of maps whose rotation
systems are factorizations of the identity of arbitrary fixed length, generalizing bipartite
maps. Indeed, such a generalization exists, and is called constellations. Constellations
are also more “colorful” than bipartite maps, in the sense that they come with an integral
parameter m > 2 for the number of vertex colors, and their definition involves proper
coloring with m colors.

Definition 2.1. An m-constellation is a map M with a proper m-coloring f that satisfies
the following conditions:

e The dual of M is bipartite, which induces colors on faces of M, where black faces
are called hyperedges, and white faces hyperfaces;

e Each hyperedge has degree m, and each hyperface has degree a multiple of m;

e In the proper m-coloring f of M, vertices adjacent to each hyperedge are colored
from 1 to m in counter-clockwise order.
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® o1 = (1)(2,4,5)(3)(6,7)

Oo2 = (1,3)(2)(4)(5,7,6)

0 o3 = (1,2,7)(3,4)(5)(6)
¢ = (1,4)(2,3)(5,7)(6)

Figure 2.4: A example of a 3-constellation and its rotation system

00

Figure 2.5: Bipartite map as 2-constellation

An m-hypermap is a map M without coloring that satisfies the first two conditions .

For a more detailed treatment of constellations, readers are referred to [I07]. In some
literature, the color parameter is denoted by k (e.g. [107]),  (e.g. [T9]) or p (e.g. [34]).
The term “hypermap” has also been used in some literature for different classes of maps,
and we follow here the definition in [38]. Figure gives an example of a planar 3-
constellation. As a convention, the root of a constellation must point from one vertex of
color 1 to a vertex of color m while leaving its adjacent hyperedge on its right. Since such
edges are in bijection with hyperedges, the hyperedge adjacent to the root is also called
the root hyperedge. We observe that an m-constellation with n hyperedges has mn edges.

We see in Figure that constellations indeed generalize bipartite maps. Given
a bipartite map, we “blow” its edges into hyperedges of degree 2, and we obtain a 2-
constellation. We thus see that hyperedges in a constellation play the same role as edges
in bipartite maps. Since rotation systems of bipartite maps are defined as tuples of
permutations of edges, we are tempted to define rotation systems of constellations as
tuples of permutations of hyperedges.

We now define a rotation system for constellations. Let M be a constellation containing
n hyperedges with distinct labels from 1 to n. As a convention, the root hyperedge always
receives label 1. For each color 7, we define a permutation o;, whose cycles are formed
by hyperedges in counter-clockwise order around each vertex. We also construct similarly
a permutation ¢ whose cycles correspond to hyperfaces, but for a hyperface we only
consider hyperedges that it borders on across an edge with vertices of color 1 and m.
This definition of ¢ is reminiscent to that of bipartite maps, where we only consider edges
pointing from a black vertex to a white vertex in the tour inside each face. The (m + 1)-
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cycle: (1,3,7,2,5)

Figure 2.6: Rotation systems of constellations as factorizations of the identity in the
symmetric group

tuple (01,09, ...,0,,¢) is the rotation system of the given constellation M and it is also
a transitive factorization of the identity in S,,:

0109+ O = id,,.

Figure illustrates the construction of such rotation systems and the reason why they
are transitive factorizations of the identity.

In the form of transitive factorizations of the identity into an arbitrary fixed number
of permutations, constellations can serve as a unifying scheme for different kinds of factor-
izations, such as those enumerated by classical or monotone Hurwitz numbers. However,
we will delay this connection until having savored the delicacy of the symmetric group.

2.2 Symmetric group

In this section, we will talk about the symmetric group and its representation theory.
Since they are all immense fields of research, we will only scratch their surfaces for what
we need in the following chapters. For a more detailed treatment of these fields, readers
are referred to various sources: [129] for the general theory of group representation, and
[136], 126] and [I30, Chapter 7] for a combinatorial treatment of the representation theory
of the symmetric group.

2.2.1 Group algebra and characters of the symmetric group

A permutation of size n is a bijective function from the set of integers from 1 to n to itself.
All permutations of size n form a group called the symmetric group of degree n, denoted
by S,, where the group law is function composition: (o7)(i) = 7(o(7)). Notice that while
functions compose from right to left, the group law we use multiplies from left to right.
A permutation ¢ € S,, can be presented as a word ¢(1)o(2)...0(n). For example, the
permutation o = 35241 sends 1 to 3, 2 to 5, etc.

Now, for a permutation o, we consider the orbits of its action on integers from 1 to n,
which are also called cycles. Each cycle is for the form (i,0(i), 0%(i), . ..,0* (i), where
k is the minimal value such that o*(i) = i. We can then present a permutation as the
collection of its cycles. For instance, the permutation o = 35241 can also be written as
o=(1,3,2,5)(4).
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We now consider conjugacy classes in S,,. Two elements o,7 in S, are conjugate if
there exists another element 7 € S, such that 7 = mor—!. Conjugacy is an equivalence
relation, therefore we can define the conjugacy class of an element o € S, to be the set of
elements conjugate to o. If we consider o as a set of cycles, the conjugate operation can
be consider as a relabeling of integers in the cycles in all possible way while preserving
the cycle structures. Therefore, a conjugacy class in .S, is the set of permutations with a
fixed cycle structure.

There is a notion that precisely captures the cycle structure of permutations. An
integer partition A (or simply partition) is a finite non-increasing sequence of positive
integers, i.e., A = [A1, \a, ..., A\x], where \; > 0 and \; = \;;; for all index i. Each \;
is called a part of \. The empty partition that has no part is denoted by e. We denote
by £(X) the length of the partition A, i.e. the number of its parts. We say that A is a
partition of a natural number n, also denoted as A - n, if > . \; = n. Equivalently, we
say that the size of a partition A, denoted by ||, is n if A - n. To alleviate the notation,
when there are multiple identical parts in a partition, we write them as a “power”, e.g.
we may write [4,2,2,2,1,1] as [4,23,12]. For a permutation o, the partition A obtained
by listing lengths of all cycles in ¢ in increasing order is called the cycle type of o. Since
the cycle type completely describes the cycle structure of a permutation, we can index
conjugacy classes of S,, by partitions of n. We denote by CI(\) the conjugacy class of S,
formed by permutations with cycle type A - n. There are n!z;* elements in CI()\), where
2y is the size of the centralizer of any element ¢ € Cl()), i.e. the number of permutations
o such that o¢ = ¢o. If X has m; parts of size i, we have z) = [ [, 9™m,!.

We will see the importance of conjugacy classes in S,, through another object. The
group algebra CS,, of S,, is the complex vector space with a canonical basis indexed by
elements in S, and a multiplication extending distributively the group law of S,. By
abuse of notation, we will identify the basis vector indexed by an element in S,, and the
element itself. As an example, for a partition A — n, we define K, = ZaeCZ(A) o, which
is an element in CS,,. The group algebra CS,, has a natural inner product defined by
regarding the scaled canonical basis ((n!)~"/20),es, as an orthonormal basis.

We now consider a sub-algebra of CS,, called the center, denoted by Z(CS,,), which
is formed by elements that commute with every element in CS,,. The center is therefore
a commutative algebra, but how do its elements look like? The answer is given in the
following proposition.

Proposition 2.1. Forn > 1, the set {K, | A\ - n} is a linear basis of Z(CS,,).

Proof. We first prove that K is an element in Z(CS,,). For any 7 € S,,, we have TK,771 =
Zaecz(,\) ror! = K, since CI(])) is a conjugacy class. We thus have 7K, = K,7, and by
linear combination, we see that K indeed commutes with all elements in CS,,.

It is clear that all K, are linearly independent. We now prove that all K, span linearly
Z(CS,). Let a =} g a,0 be an element of Z(CS,). Since a is in the center, we have
a=rTar " =3 o agror " for any 7 € S, from which we have a, = a,,.-1. Therefore,
ay is the same for all o in the same conjugacy class, thus a is a linear combination of

some K. Hence, we conclude that {K | A - n} is a linear basis of Z(CS,,). O

As a consequence, the dimension of Z(CS,,) is the number of partitions of n. By the
representation theory (cf. [129], or an elegant treatment specialized to the symmetric
group in [136]), there is an orthonormal basis (Fp)g-,, of Z(CS,,) whose elements are also
indexed by partitions of n and satisfy F; = Fy for all § - n. Furthermore, we also have
Fy, Fy, = 0p,.0,Fp,, which makes them particularly suitable for computation.
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|| L[] | 5] 4 ]3|
A= (5,3,3,2) Ap=(5,3,3,2)/(3,21) A= (5,3,3,2)
p=(53,221)

(a) (b) (c) (d)

Figure 2.7: Examples of a Ferrers diagram, a skew diagram, a ribbon and a ribbon tableau

We now have two bases of Z(CS,,), and we want to know how to change from one to the
other. It is here that we see characters. For an element a € Z(CS,,), we denote by [K)]a
(resp. [Fyla) the coefficient of K, (resp. Fy) in the expression of a as a linear combination
of elements in the basis (K))x-n (resp. (Fy)grn. We denote by f? the dimension of the
vector space FyCS,,, which is also the dimension of the irreducible representation of S,
indexed by 6. The character x§ of S, indexed by 6 and evaluated at \ is defined as the
coefficient in the following change of basis between (K )y, and (Fp)an:

F—ﬂZQK K—mZﬁF (2.1)

" An A on

The two formulas of change of basis give the same values of x4, which can be seen by
substituting one in the other and using the fact that (Fy)g., is an orthonormal basis. We
also have xf;. = f*.

Despite their algebraic definition, the characters in the symmetric group can also be de-
fined in a purely combinatorial way. Given a partition A = (Aq, ..., \g), its Ferrers diagram
is a graphical representation of A\ consisting of left-aligned rows of boxes (also called cells),
in which the i-th line has \; boxes. Figure [2.7(a) shows an example of a Ferrers diagram,
drawn in French convention, where the first row lies at the bottom.

The notion of partitions can be slightly generalized. A skew-partition \/u is a pair
of partitions (A, u) such that for all @ > 0, A\; = p;. Graphically, it is equivalent to that
the Ferrers diagram of X\ covers totally that of u. We then define the skew diagram of the
form A\/p as the difference of the Ferrers diagrams of A and of p, i.e. the Ferrers diagram
of A without cells that also appear in that of u. Figure (b) shows an example of a skew
diagram. A ribbon of a Ferrers diagram A is a skew diagram of the form \/u for some p
that is connected and without any 2 x 2 cells. The size of a ribbon is the number of cells
it contains. The height of a ribbon A/u, denoted by ht(\/u), is the number of rows that
the skew diagram of \/u occupies minus one. Figure shows an example of a ribbon
of size 8 and of height 3.

We can now define the main objects in the combinatorial interpretation of characters
in the symmetric group that we will be using. We denote by € the empty partition. A
ribbon tableau of shape \ and type y is a sequence of partitions (A® = X\, X1 M) = ¢)
such that for all i, the skew tableau A(® /A\(*1) is a ribbon of size p;. It is easy to see that
the shape and the type of ribbon tableau must be partitions of the same integer. The
sign of a ribbon tableau T = (A®) = X\, A1 AF = ¢), denoted by sgn(T), is defined by

k—1
(3) /) (i+1)
sgn(T) = [ J(~1OAe),

=0



40 CHAPTER 2. FIRST STEPS IN MAP ENUMERATION

- — - — -
3 3 2 2

413

1 5 1 4 1 5 4

1 4 3

6|s] 2 | [s 2 | [e]s] 2 | [s 1 AENE

- + - - +

2 3
413

5 4 2 5 2 2
IEH I — 4
6 1 615 1 6 1 615 1

— — + —

Figure 2.8: Murnaghan-Nakayama rule for XE:??ZU] = -2

Figure shows a ribbon tableau of shape A = (5,3,3,2) and type p = (5,3,2,2,1),
which has sign —1. The partition A(¥) is given by the diagram formed by ribbons with
label strictly smaller than i. We can now state the Murnaghan-Nakayama rule that
expresses characters in the symmetric group with ribbon tableaux.

Theorem 2.2 (Murnaghan-Nakayama rule). For two partitions A\, u of a natural number

n =1, we have
A
Xp, = Z Sgn(T)
T ribbon tableau
shape(T)=2A, type(T)=p

Figure shows how to compute the character Xg:gzgk,l,l] using the Murnaghan-
u

Nakayama rule. In fact, the condition that the type p of a ribbon tableau must be a
partition is not necessary for the Murnaghan-Nakayama rule. We can relax the definition
of ribbon tableaux to allow arbitrary finite sequence i as the type. However, we can prove
that the ordering of elements in p does not affect the sum of the sign of all ribbon tableaux
of type p with the same shape. Therefore, here we fix the order of i to be decreasing,
which is equivalent to saying that p is a partition.

For more information on ribbon tableaux and the Murnaghan-Nakayama rule, readers
are referred to [130), Section 7.17] and [126, Section 4.10].

2.2.2 Counting factorizations using characters

In the previous section, we have presented characters as coefficients in the change of basis
between (K)x-, and idempotents (Fy)grn in the center Z(CS,,) of the group algebra of
Sp. This formalism allows us to easily express the number of factorization of the identity
into permutations with given cycle types. Suppose that we want to find out the number
B(A*, \°, p) of factorizations o.0.¢ = id, in S,,, where o,, 0, and ¢ have cycle types A*, A°,
1 respectively. We notice that the factorizations we count here are simply rotation systems
of bipartite maps, with transitivity requirement dropped. We can compute B(A*, \°, i)
in Z(CS,,) in the following way, using the fact that all Fj are idempotent and FyFyp = 0
if 0 #6'.
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B()\.,)\O,,u) = Z 1= [K[ln]]K)\-K)\oK“

U-Uo¢=idn

Te€CL(A®),00eC1(A),peCI (1)

(n})? XXXt ]
— [Kin E LEy = E X X3 XO(f
[Kpim] T (f9)3 z,\-onzu = A XXX p )~

(2.2)

Enumeration of factorizations using characters can be dated back to Frobenius, and the
relation above is sometimes called the Frobenius formula. The computation above can be
easily generalized to factorizations involving more permutations. Let C ()\(1), o A 1)
be the number of factorizations o0y -+ 0,¢ = id,, in S, such that ¢ € Cl(n) and o; €
CI(A®) for all 4. Such factorizations are said to be of m-constellations type. We have the
following expression of C(AM, ... A ).

(1) (m) _ (n!)™ 6\1—m 0 T 6
C(/\ 1 A 7:“’) 2 H;zl 200 ;(f ) Xu le]l: XAG) - (23)

We now look at two other factorization models we have mentioned in the previous chap-
ter. A transposition is a permutation with only one cycle of length 2 and all other cycles
of length 1. In other words, transpositions in S,, are exactly elements in CI([2,1"?]). We
often write down a transposition as its unique 2-cycle. A transposition factorization with
r transpositions in S, is a tuple (1, ..., 7, ¢) with ¢ an arbitrary permutation in S,, and
all 7; transpositions, which satisfies

T T = id,.

A transposition factorization (7q,...,7.,¢) is monotone if, when we denote by (a;,b;)
with a; < b; the unique 2-cycle of 7;, we have by < by < --- < b,.. Given a partition
A = n, the classical Hurwitz number H,.(\) is the number of transposition factorizations
(11, ...,70,¢) with ¢ € Cl(\) that are transitive, divided by n!. Similarly, we define the
monotone Hurwitz number ﬁT(A) with monotone transposition factorizations. Readers
might be confused with the notation for monotone Hurwitz number, since there is no rea-
son that elements in the same conjugacy class have exactly the same number of monotone
transposition factorizations, but we will see later that it is indeed the case.

Although with seemingly different nature, transposition factorizations can in fact be
put under a unified framework with factorizations of constellation type using the group
algebra. The Jucys-Murphy elements (Jy.)1<k<n are sums of transpositions defined by

J=0,Je = (LE) + (2k) + -+ (k—1,k) for k=2

Jucys-Murphy elements commute with each other, and they play an important role in
the representation theory of the symmetric group (c¢f. [136]). They can also be used to
describe factorizations of the identity thanks to the following proposition. We define a
product II,,(¢) by the equation

= [ [Gd, + tJ). (2.4)
k=1

Proposition 2.3. Let t be an indeterminate that commutes with elements in CS,,, we

have
Hn(t) _ 2 gn—iteycle(o) 5 _ Z t”_w‘)K,\.

o€eSy A-n
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Proof. We proceed by induction on n. The case n = 1 is trivial. Suppose that the identity
holds for a certain n. For o € S,11, let k = o(n+1). There are two cases: either k = n+1
or not. In the first case, we can also see ¢ as a permutation in S, and by passing to S, 1
we gain one cycle (n + 1). In the second case, we want to find a transposition 7 of the
form (k',n + 1) with an unknown &’ such that o’ = o7 satisfies o'(n + 1) = n+1, i.e., o’
can be considered as a permutation in S,,. We have k' = 7(¢'(n + 1)) = k, therefore the
choice of 7 is unique. Furthermore, o and ¢’ have the same number of cycles. We thus
conclude that

Hn+1(t) = Z tn—#cyCIe(g/)o./(idn+1 + tJn+1> _ Z tn+1—#cycle(a)o_.

o’eSy 0ESh+1
By induction, the identity holds for all n. O]

It is interesting that, even though Ji is not in Z(CS,,) in general, the related product
IL,(t) is. Let F{ ,()\) be the number of factorizations oy - 0p¢ = id, in S, such that
¢ € CI()\) and the total number of cycles in o; for all i is k. Similarly, let FX()\) and
Fﬁ (A) be respectively the number of (not necessarily transitive) general and monotone
transposition factorizations 7y - - - 7,.¢ = id,, in S, such that ¢ € A. By Proposition [2.3, we
can express 5 (X), F(X) and F(X) using IL,(t). We start by F . (A):

FLO) =Y th tom)

o1 om=0¢1
a:€Cl((D),peCl(N)

_ ‘Cl( tmn kK)\ H <2 tnf(#(i))KH(i)>

i=1 \AFn
=nlzy [tm" kK] n ()™,

For FH()), we observe that a sequence 71, ..., 7, of transpositions in S,, can be seen as a
multiset of elements in C1([2,1"?]) with labels from 1 to r. By the multiset construction
of labeled combinatorial classes in Section [2.3.1 we have

FHO) = nlz [t Ky ] exp (t Z 7') =nlzy [t"Ky] exp < Z Jk>
D

TeCI([2,17—2
= nlz 't K, lim I, (a't)"

The case for Fﬁ (A) is a bit simpler, since in this case the sequence of transpositions can
be divided into n segments according to the larger element in the only 2-cycle:

FIO) =1 3 = |CUN)| - [t"K)] HZt“J“

r=0 (alybl)"'(ar:br):¢_1 i=1az0
$eCl(N),by<--<by
- 1

= [CI(\)] - [t"K,] = nlzy [t K\, (—t)

LI,

The factor n!z;* comes from the number of choices of ¢ from CI()\) in each case. It is
worth noting that, since the sum of monotone transposition sequences weighted by length
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can be expressed using I1,(¢), which is an element of the center Z(CS,,), it is clear that
permutations in the same conjugacy class share the same number of such factorizations.

Of course, these are not exactly the number of constellations or monotone Hurwitz
numbers that we want, since the transitivity constraint is dropped. But in Section [2.3] we
will see how to add back that constraint by a simple manipulation of generating functions.

2.3 Generating functions

In this section, we will discuss how to enumerate combinatorial objects using their gener-
ating function. Since the use of generating functions in enumeration is a vast and fruitful
topic, we can only cover the basics here. The philosophy of generating functions is that, to
enumerate a certain class of combinatorial objects constructed recursively, we only need to
construct a power series whose coefficients are the numbers of such objects with different
size, then translate the recursive construction of the objects into a functional equation
of the power series, and finally use algebraic and analytic methods to obtain informa-
tion about the wanted coefficients. There are several kinds of generating functions, and
the study of how to extract enumerative information from these generating functions has
grown into a huge and important field. Readers interested in a more complete treatment
of generating functions are referred to the book [69].

Let K be a field. We denote by K[xy, s, ..., x,| the polynomial ring with variables
T1,Ts,. .., T, which is spanned linearly by monomials %252 - - -zFn . Sometimes we need
to deal with polynomials “with infinitely many variables”. For an infinite sequence of
variables x1, xs, ..., we consider the projective limit of (K|x1,z2,...,2,])n>1, denoted by
K[z, za, .. .]:

Klzy,z9,...] = {(Pn)@l € HK[xl, ooy Tn | Y, VE, Py = Poyg(zq, ..., 20,0, .. .,O)} )

n=1

Although scary at appearance, we can simply imagine a member of K[z, xs,...] as a
(potentially infinite) sum of monomials containing finitely many variables.

We now set the playground of our generating functions. We first fix a base ring (in
fact, a field in many cases) K. We denote by K[[t]] the formal power series ring with
variable ¢, which is formed by formal power series of the form

Z c;it', where Vi, c¢; e K.

120

As a shorthand, we denote by K[[t1,t2]] = K[[t1]][[t2]] the ring of power series in ¢t whose
coefficients are power series in ¢;. Furthermore, we extend this notation to an arbitrary
finite number of variables. Other than polynomials and formal power series, we will also
need some more complicated objects. We now require K to be a field, which is called
the base field. We denote by K(x1,xs,...,x,) the rational fraction field with variables
T1, X9, ..., Ty, which is formed by fractions P/Q of polynomials P, Q € K[z, ..., x,] with
Q # 0. We denote by K((¢)) the Laurent series field with variable ¢, which is formed by
Laurent series of the form

Z ct' with Vi,¢; e K

i>—d
where d € Z. In other words, we can allow a finite number of terms with negative powers
in ¢ in the Laurent series. A Laurent series in ¢ with finitely many non-zero coefficients
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Notation Name Elements

kn

K[z, e, ..., 2] Polynomial ring Linear combinations of 27" - - - ¥

K(zq,x2,...,2,) Rational fraction field  P/Q, where P,Q € K[z, z,...,x,]

K[[¢]] Formal power series ring 2 Cpt™
n=0
K((%)) Laurent series field Z et for any k=0
n=—k
K((t*)) Puiseux series field Z cpt™? for any k = 0,d > 1
n=—k

Table 2.1: Some rings and fields used in generating function method

is also called a Laurent polynomial in t. In other words, a Laurent polynomial in ¢ is
a polynomial in ¢ divided by some power t? of ¢t. Finally, we denote by K((t*)) the
Puiseuz series field of variable ¢, which is the union of all Laurent series fields K((t*/?))
for all integers d = 1. In other words, we allow fractional powers in our Puiseux series (but
with one common denominator). Puiseux series are important in the generating function
method due to the following theorem (cf. [69, Chapter VIL.7.1]).

Theorem 2.4 (Newton-Puiseux). For K an algebraically closed field with characteristic
0, and P(x,y) € K[z, y| of degree k in y, the equation P(x,y) = 0 has k solutions (counted
with multiplicity) in K((z*)).

Table offers a comparison of all the objects mentioned above. In this thesis, we will
use formal power series to write generating functions of combinatorial objects. By abuse
of notation, when a generating function converges in a neighborhood of 0, we will identify
it with the analytic function to which it converges. We also introduce the following useful
notation: for F' e K|[[t]] or F' € K((¢)), we denote by [t"]F the coefficient of t" in F;
for I € K((t)), we denote by [tZ°]F the positive part of F, that is, the part with non-
negative powers in t. We also notice the following inclusions: K[[t]] < K((¢)) < K((t*))
and K(t) < K((¢)).

2.3.1 Combinatorial classes and their construction

We now give a brief exposition of how to write the generating function of a class of combi-
natorial objects, and how to extract a functional equation from a recursive decomposition
(or a combinatorial specification as in [69]).

Let C be a set. A statistic is a function st : C — N. We say that C equipped with
a statistic (called the size) | - |¢ is a combinatorial class (or simply a class) if, for all
n € N, the set C; of elements of size n is finite. When writing the size statistics, we often
leave out the class that it belongs to and write | - | when there is no ambiguity. There
are two fundamental combinatorial classes: £, containing one element of size 0, and Z,
containing one element of size 1. We define a variable scheme as a set of pairs (st;, z;) of
a statistic and a variable. For a class C, given a variable scheme {(sty,z1),..., (stg, zx)}
with statistics of C and an extra indeterminate ¢ for the size statistic, we can define two
types of formal power series as generating functions of C:
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e Ordinary generating function: (or OGF for short)

Feona(t, 1, mp) = ) el @) pstn(e)

ceC

e Exponential generating function: (or EGF for short)
t|c| sty(c st (c
FC,eXp(t>$1a Ce ,.ka) = Z 71'1 1) o xk’“( )

We say that the variable x; marks the statistics st;. As a shorthand, when there is no
ambiguity, we write x instead of xi,...,z; in arguments of a generating function. We
will also omit the index ord and exp when there is no ambiguity.

The reason why we have two types of generating functions is that the number #C,, of
objects of size n in a class C can grow at different speeds, and when it exceeds exponential
growth, the OGF of C will cease to be convergent in any neighborhood of ¢t = 0. In
this case, the OGF cannot be the series expansion of an analytic function, and we are
denied the use of powerful analytic methods (however, it is still well-defined as a formal
power series). This situation happens mostly with labeled classes, where the building
parts counted by the size of the object receive distinct labels. For instance, the class of
permutations is a labeled class. We usually use EGF for labeled classes.

By combining combinatorial classes, we can obtain new classes, whose generating
functions can be expressed in the generating functions of the original classes in some
cases. Let A, B be two classes. We can construct the following new classes.

e Disjoint union: Denoted by A+ B, the disjoint union of A and B is a combinatorial
class with the size statistics that gives the size in A for objects in A and the size in
B for objects in B.

e Cartesian product: Denoted by A - B, the Cartesian product of A and B is
a combinatorial class with the size statistics | - |45 given by [(a,b)|45 = |a|a +
|b|s. We also use A? as a shorthand of A - A, and similarly A* with k& > 2 for
successive Cartesian products of the same class A. For labeled classes, there should
be a relabeling of building blocks that preserves the order of labels in a,b. Due to
relabeling, the Cartesian product (a,b) stands for a set of objects in A - B with the
same underlying combinatorial structure but different labels.

e Sequence construction: Denoted by SEQ(.A), the sequence class of A is the set
{(a1,aq,...,a;) | k € N,Vi,a;, € A} of sequences with elements in .4, with the size
given by |(a1,...,ax)| = 3, |a;]. In this construction, for labeled classes we also
have to consider relabeling as in Cartesian product. We can also consider SEQ(.A)
as a short hand of £ + 3, A".

e Multiset construction: Denoted by MSET(A), the multiset class of A is the
set of multisets with elements in A. For labeled classes, MSET(A) can be seen
as a shorthand for & + >, %Ai, where the extra factor means that we are not

interested in the order of components (but they distinguish themselves with labels
of their building blocks).

e Pointing construction: Denoted by A°, the pointed class of A is the set U;>1.A4; x
{1,2,...,i}. Elements of this class may be seen as an object in A with one of its
building blocks (counted by the size statistics) pointed.
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Construction Unlabeled(OGF) Labeled(EGF)

A + B F.A,ord + FB,ord FA,exp + FB,exp
A-B FA,ordFB,ord FA,eprB,exp
1 1
SEQ(A —_— —_—
Q( ) 1— FA,ord 1— F.A,exp

MSET(A)  Messy and not needed  exp(F4exp)

to to
¢ 7F or 7F ex
A ot e ot b

Table 2.2: Translation from constructions to generating functions

To avoid confusion on labeled classes, we will now see an example of relabeling. Let
A = SEQ(Z) be the labeled class of sequences of points. We can imagine an element
a € A of size n as a sequence of distinct labels from 1 to n. Now we consider the labeled
class B = A2. Let b be a member of B, we can see b as two sequences of labels from 1 to
m + n, the first of length m, the second of length n. The order of labels in each sequence
gives two elements aq, as € A of size m and n respectively. However, several elements in B
give the same couple (ag, as) with this operation, each corresponds to the subset of labels
used in the first sequence. Therefore, each couple (a1, as) of size m and n leads to (™)
elements in B. This extra factor is due to the relabeling process.

A statistic st defined on all the powers C* of a combinatorial class C is called additive
if on the successive Cartesian product C*, it is defined by st((cy,...,cx)) = S, st(c:).
The size statistic is additive by definition. Many useful statistics are additive, for example
the number of faces of degree k and the number of vertices in a map, and they can appear
in many cases. For instance, in the Tutte equation of planar maps (see Example 3 in
Section , there is a case where the root is a bridge. Maps in this case can be seen
as a pair of planar maps linked by an edge, and in this case the number of vertices is
an additive statistics. There are also statistics that are not additive, especially statistics
that are marked by “catalytic variables” that we will introduce later in examples. We now
consider generating functions defined with extra statistics that are all additive. Let A, B
be two classes with common additive statistics sy, ..., st;. Table gives the generating
functions of different constructions based on 4 and B under the common variable scheme
(st1,21), ..., (Stg, xk).

We will not give detailed proofs of all the generating functions here. To see the general
proof idea, we will give a short proof for expressions of the OGF and the EGF of A-B
and the EGF of MSET(A). For the OGF of A - B, we have

FA-B,ord(tX) = Z tl(a7b)|xit1((a7b)) e zztk((a7b))

(a,b)eA-B
= Z t|a|$it1(a) s Sl)ztk(a) Z t|b|l’it1(b) ce xztk(b) = FA,ord(t7§>FA,ord(t7X)-
aceA beB

For the EGF of A- B, the computation is similar, but we have to take care of the binomial
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factor stemming from the relabeling:

(a,b)]
st1((a,b)) sty ((a,b
FABeXth E E ( ) ab)“!lf 1(( )[L'kk( )

aceA beB
[b]

tH st st at st1(b st
= 2 M AR >b|!x11” i = P (%) Faenp (£, %),
aeA beBB

For the EGF of MSET(.A), we notice that its elements are now multisets of elements in A
that are all distinguishable thanks to labels. In this case, a multiset of size k corresponds
to k! ordered tuples of size n, and we have

Fex
FMSET(.A),exp = Z % = eXp(FA,exp)-
k=0 ’

As a further remark, with additive statistics that mark the number of some substruc-
tures in a combinatorial object such as triangular faces in a map, it is also sensible to
consider pointed classes where one of the marked substructures is pointed. In this case,
the generating function can be obtained by differentiating the appropriate variable.

We will now see how we can express the generating functions of transitive factorizations
of the identity in the symmetric group using the construction MSET. Let us take as
example factorizations of the form o,0.,¢ = id. When transitivity is imposed, these
factorizations become rotation systems of bipartite maps. For a factorization tuple s =
(0e,00,0), let O(i) be the orbit of the integer i in the group generated by o, 0, and ¢.
The restriction s|ou) = (0e|o@); 0oloa), @low)) of s in the orbit O(i) is still a factorization
of the identity, but in S)p() and is now transitive. By decomposing s along all orbits,
we can see s as a multiset of transitive factorizations with relabeling. Let A be the
class of such factorizations, and B the class of rotation systems of bipartite maps. The
size of a factorization tuple s in 5, is n. By the construction MSET, we know that
the EGFs of A and B satisfy Fl4ex, = exp(Fpexp). This relation also applies to other
types of factorizations and rotation systems. Therefore, to obtain the generating function
of rotation systems, we only need to take the logarithm of the generating function of
factorizations, and we say colloquially that taking the logarithm “enforces” transitivity.

These constructions can be used to describe recursive decompositions (also called com-
binatorial specifications in [69]) of combinatorial classes, which can then be translated into
functional equations on the corresponding generating functions. If we manage to solve
the functional equation for an exact expression of the generating function, we can try to
extract its coefficients to obtain an explicit expression of the number of elements of size
n in the combinatorial class, possibly refined by various statistics. If the generating func-
tion satisfies some analytic condition, we can also extract the asymptotic behavior of its
coefficients using analytic methods by looking at singularities of the generating function.

2.3.2 Analytic method for asymptotics

In the following introduction of the analytic method, we assume that readers have a
general knowledge of complex analysis. Readers are referred to [69, Chapter IV] for
details.

On the complex plane, a domain D is a connected open region, and we denote by dD
its boundary. For a function f defined over a domain D, we say that f is analytic in D if
for any z € D, there is an open set U, containing z such that f is complex differentiable
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in U,, or equivalently f has a Taylor expansion at z that coincides with itself in U,. Let
2o be a point on the boundary dD, we say that f is analytically continuable at zy if there
exists an open set U containing 2z, and another function f* that is analytic in U such that
f(z) = f*(2) in U n D. In fact, given the domain D, there is a unique function f* that
satisfies all conditions. In this case, we say that f can be continued to U, and we can define
the function f to be identical to f* in U. This process is called the analytic continuation
of fover DnU. A singular point (or simply singularity) of f is a point zy € D where
f is not analytically continuable.

Let f(t) be a formal power series in ¢ such that f(¢) is analytic in an open disk D(r)
of radius r > 0 centered the origin ¢ = 0. We can extend the domain of definition of
f(t) to disks with larger and larger radius by analytic continuation, until we hit the first
singularity. Let D(R) be the largest disk centered at t = 0 such that f(¢) is analytic
in D(R). The radius R is called the convergence radius of f(t), and there is at least
one singularity of modulus R. For generating functions we considered in combinatorial
enumeration, there is a theorem called Pringsheim’s theorem [69, Theorem IV.5] that
locates at least one of these singularities with minimal modulus.

Theorem 2.5 (Pringsheim’s theorem). For a formal power series f(t) with non-negative
coefficients, if f(t) is analytic in some open disk containing t = 0 and with finite conver-
gence radius R, then t = R is a singularity of f(t).

However, this theorem does not forbid singularities to appear elsewhere. When ana-
lytically continued, a formal power series with finite convergence radius may encounter
singularities on and outside its disk of convergence. But as we will see later, singularities
outside the disk of convergence have no influence on the asymptotic behavior of the co-
efficients. Meanwhile, we need to worry about other singularities with the same modulus
R, especially in the case of coefficient periodicity, e.g. [t"]f(t) # 0 only when n is in
some congruence classes. Such singularities whose modulus is equal to the convergence
radius of the function are called dominant singularities. If we impose stronger analytic
conditions, the analysis of these dominant singularities will tell us the asymptotic behav-
ior of the coefficients. We now describe these conditions in the case of a unique dominant
singularity.

Definition 2.2. For 0 < p < R and 6 € (0,7/2), the open set
A(p,R,0) ={ze€C| |z| < R,|arg(z — p)| > 0}

is called a A-domain. A power series f(t) is called A-analytic if all its coefficients are
non-negative and it is analytic in some A-domain with p its real dominant singularity
assured by Pringsheim’s theorem.

Many generating functions we encounter in combinatorics are A-analytic. For instance,
any rational fraction in ¢ that does not diverge at ¢t = 0, satisfies the conditions in
Pringsheim’s theorem and has only one dominant singularity is A-analytic. We have the
following transfer theorem that determines the asymptotic behavior of coefficients in a
A-analytic power series f from the behavior of f near the dominant singularity (see [69,
Chapter VI] for a more general result).

Theorem 2.6 (Transfer theorem). For a power series f(t) that is A-analytic with real
dominant singularity p, if there ezist o, f € R\Z<o with a > 8 such that

ft) =c(l—t/p)™*+0((1 —t/p)™") when t—p in Alp,R,0),
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then we have c

n _ a—1_—n B—1 _—n
1) = gy e+ O,
Here, T'(z) is the gamma function I'(z) = § 2*~'e~*dz, and we have T'(k) = (k — 1)! for
any integer k > 0.
If we have instead

f(t) = —cln(1 = t/p) + O((1 = t/p)~")
for B e R_\Z«o, then we have
["]f(t) = cn”'p™" + O~ 1p™").

The A-analytic functions discussed above are closed under differentiation and inte-
gration. We can thus also apply the transfer theorem to derivatives and primitives of a
A-analytic function with certain singularities.

Theorem 2.7 (Theorem VL8 in [69], Lemma 2.3 in [66]). For a power series f(t) that
is A-analytic with real dominant singularity p, suppose that for some a > [3,

ft)=c(l—=t/p)™*+0((1—-t/p)™?) when t—p in A(p,R,0).

Then f'(t) is also A-analytic, with an expansion near p coming from term-by-term differ-
entiation as

f'(t)=cap™ (1 —t/p) P +0O(1 —t/p)™" ") when t—p in A(p,R,0).

Similarly, every primitive F(t) of f(t) is also A-analytic, with an expansion near p coming
from term-by-term integration.

All these theorems apply to A-analytic functions with one dominant singularity. When
there are multiple dominant singularities, for the asymptotic behavior of coefficients, we
only need to add up the contributions of all dominant singularities. For differentiation
and integration, we can also treat each singularity separately.

To further extend the applicability of singularity analysis to A-analytic functions, we
introduce the following partial order on formal power series. For two formal power series
f(t), g(t) with non-negative coefficients, we say that f(t) is coefficient-wise smaller than
g(t) (denoted by f(t) < g(t)) if for all n € N, we have [t"]|f(t) < [t"]g(t). It is easy
to see that the order < is stable by addition, multiplication by any formal power series
and differentiation. Given a formal power series f(t) with non-negative coefficients, if
there exist two A-analytic power series with non-negative coefficients f_(t), fi(t) with
the same dominant singularities and the same asymptotic behavior g(¢) + O(h(t)) near
the real dominant singularity, and that f_(¢) < f(t) < fi(¢), then we say that f(t) is
congruent to g(t) + O(h(t)), denoted by f(t) = g(t) + O(h(t)), and f(t) has the same
asymptotic behavior g(t) + O(h(t)) as f_(t) and f,(t) in this case. The relation ~ is also
stable by addition, multiplication and differentiation. As an example, we take

f-(8) = (A= () = (=) + (L= 0)7" f(t) = Y, (n+ L+ [sin(n)])¢".
n=0
In this case, we have f_(t) < f(t) < fi(t), and both f_(¢) and f(¢) has the asymptotic
behavior (1 — )72 + O((1 — t)™!) near t = 1. Therefore, although the A-analyticity of
f(t) is not clear from its strange definition, we still have f(¢) ~ (1 — )72 + O((1 —t)™1),
which is also the asymptotic behavior of f(¢) near ¢ = 1. Using this notion of congruence,
we can sometimes obtain asymptotic results without proving A-analyticity.
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Figure 2.9: A plane tree and its two decompositions

2.3.3 Resolution of functional equations in examples

We have now equipped ourselves with some essential elements of how to manipulate
generating functions. It is time to see how they work in practice. We will now see three
examples of application of generating functions to combinatorial enumeration: plane trees,
Dyck paths and planar maps. In the course, we will see how to write functional equations,
how to solve them and how to extract both exact and asymptotic enumeration information.
We will also see two resolution methods that are widely used in the study of maps: the
kernel method and the quadratic method.

Example 1: plane trees

A plane tree is a planar map with only one face, which is the outer face. As a conse-
quence, the underlying graph of a plane tree has no cycle. The size of a plane tree is the
number of edges it contains. By Euler’s formula, a plane tree of size n has n + 1 vertices.
Here we allow the empty tree, which has no edge but only a vertex. We often draw a plane
tree with its vertices spread over layers, where the root vertex occupies the highest layer
0, and a vertex at distance k to the root vertex stays on layer k. For a vertex u on layer
k that is adjacent to another vertex v on layer k + 1, we say that w is the parent of v,
and v is a child of u. In this illustration, we always put the root edge as right-most edge
among all edges between layers 0 and 1. Figure (a) gives an example of a plane tree.
Since the root is fixed by edge ordering, in figures we often omit the marking on the root
edge. We denote by T the class of plane trees, and T'(t) its OGF. The first few terms of
T(t) are

T(t) =1+t+ 2% + 5% + 14¢* + 4265 + -+ .

Plane trees can be decomposed into smaller plane trees in more than one way. Each de-
composition gives a combinatorial specification of plane trees. The first way to decompose
a plane tree is to delete the root vertex and its adjacent edges, then for each connected
component, we choose its only vertex on layer 1 to be the root vertex and the right-most
edge between layer 1 and layer 2 (if any) to be the root edge. If the original plane tree
is not empty, we obtain a sequence of plane trees. Conversely, given a sequence of plane
trees, we can reverse the procedure to construct a non-empty plane tree. Figure (b)
gives an example of such a decomposition. We thus have the following specification:

T =&+ ZSEQ(T).

The second decomposition can be seen as a Tutte decomposition. For a non-empty plane
tree with root vertex u and root edge e = {u, v}, we delete e and obtain two connected
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components. For the component containing u, we choose the right-most edge adjacent
to w (if any) to be the new root edge. For the component containing v, we choose v to
be the root vertex and the right-most edge adjacent to v (if any) as root edge. We thus
obtain a pair of plane trees, and this is clearly a bijection between a non-empty plane
tree and a pair of plane trees. Figure (c) illustrates an example. We now have another
specification:

T=E+ZT
The two specifications give rise to the same functional equation for 7"
tI* —T+1=0. (2.5)
Although this quadratic equation has two solutions, only one of them is a power series in

t:

= 21t (1—(1—4t)"?).

Using the generalized binomial theorem

(1+t)“=2tk<g) =Z§jﬁ(a—i),

k=0 k=0 " i=

T(t)

we obtain the following expression of coefficients in T'(¢):

[T = 2n1—|— 1 (2717::— 1) B njlt 1 <2:)

These coefficients are also called the Catalan numbers, and they count many combinatorial
objects, such as non-crossing partitions, binary trees and stack-sortable permutations.

We can also obtain the asymptotic behavior of coefficients by applying the transfer
theorem. It seems that 7'(t) has a singularity at ¢ = 0, but it is in fact removable, and
T(t) is indeed a power series. The dominant singularity of T'(¢) occurs at ¢ = 1/4, and
T(t) = 2—2(1 —4t)"2 +2(1 — 4t) + O((1 — 4t)*?) near t = 1/4. By applying Theorem [2.6]
to T — 2 — 2(1 — 4t), we obtain

[T () — 7:/2713/24” + O(n-524m),
This is because I'(—1/2) = —272. We also observe that, although poles of a function are
always singularities, not all singularities are poles. For instance, ¢ = 1/4 is a singularity
of T'(t) but not a pole, since T'(1/4) = 2 is a finite value. This observation will play a
crucial role in later chapters when we need to find the singularity of formal power series
of the form f(g(t)), which are compositions of other formal power series.

Example 2: Dyck paths, catalytic variables and the kernel method

We now consider walks on Z?, starting from (0,0) and consisting of up-steps u = (1,1)
and down-steps d = (1,—1). A positive path of size n is a walk (p;)1<i<n of length n with
u, d steps that always stays in the upper plane (y = 0). A Dyck path is a positive path
that ends on the z-axis (y = 0). Since the height on which a positive path ends has the
same parity as its length, we know that a Dyck path is always of even size. We denote
by P the class of positive paths and by D the class of Dyck paths. In P, we define the
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finishing height h(P) of a positive path P as the y-coordinate at the end of the path.
Figure gives an example of a positive path with finishing height 2 and a Dyck path,
both of length 10. We observe that Dyck paths are exactly positive paths with finishing
height 0. We denote by P(t,x) the OGF of positive path with variable scheme (h, x), and
D(t) the OGF of Dyck path. We have D(t) = P(t,0).

Positive path Dyck path

Figure 2.10: Examples of a positive path and a Dyck path

We now want to count the number of Dyck paths with given size. Although it is
possible to decompose a Dyck path into smaller Dyck paths, which will give the same
functional equations as those in the previous example, here we choose another type of
decomposition. We will now try to write a functional equation for P(¢, x) counting positive
paths, which are more general than Dyck paths, then solve for D(t) as a special case.

Given a positive path P, we consider the positive path P’ obtained by adding one step
to the end of P. There are two possibilities: adding an up-step or a down-step. Adding
an up-step always results in a positive path. The same works for adding a down-step to
a positive path, except when it is a Dyck path. Every non-empty positive path can be
obtained in this way. We thus have the following specification for positive paths:

P +dD = £ + uP + dP.

Here, u (resp. d) corresponds to a class containing only the up-step (resp. down-step),
with OGF tz (resp. tz~'). We thus have the following functional equation:

P(t,x) +to'D(t) =1+ t(x + 27 ") P(t, x).

A rewriting gives

(tx® —x +t)P(t,z) + x = tD(t). (2.6)
We observe that, if x(t) is a formal power series that cancels the factor (tz? — z + t) by
substitution, we will have immediately tD(t) = x(t), which gives a solution of D(t). We
thus only need to search for such a function z(t) satisfying that ¢~ x(t) is also a formal
power series. Indeed, the equation tz? + ¢t — 1 = 0 has two solutions in z, but only one of
them satisfies our condition:
1= (1 4h)'?
a 2t ‘

x(t)
We thus find the OGF of Dyck paths:

1—(1—4t2)'2

2t2 ‘
A brief examination shows that D(¢) is indeed a power series. As a bonus, by substituting
back to (2.6)), we get an expression of the OGF for the more general class of positive paths:

1= (14?2 - 2t
At —x 1)

D(t) =

P(t,x)
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We observe that, in the expression of D(t), there are only terms involving ¢?, and
D(t) is in fact also a power series in ¢?, i.e. only terms t*" with even power have non-
zero coefficients, which agrees with the fact that Dyck paths are of even length. We
also observe that the expression of D(t) is similar to that of plane trees in the previous
example. Indeed, Dyck paths are also counted by Catalan numbers, and in a later chapter
we will describe a bijection between plane trees and Dyck paths.

Although we are primarily interested in the OGF D(t) of Dyck paths, to write a
functional equation, we choose to extend our sight to a more general class of objects with
an extra statistic, namely the class of positive paths with finishing height statistic. In
the functional equation, we thus need an extra variable x in order to control the finishing
height, which is then dropped. This extra variable acts like a catalyst in a chemical
reaction, which is needed for the reaction to happen at a desirable speed, but ultimately
absent from the product. This is perhaps the image that Zeilberger tried to convey
when he coined the term catalytic variable in [I38]. The equation can be called an
functional equation with one catalytic variable of the OGF of positive paths.

Our strategy of resolution of comes from a more general principle called the
kernel method for resolution of linear functional equations with one catalytic variable.
Suppose that we have an equation for the generating function F'(t,z), alongside with
some unknown function G(t) that does not depend on z (which is usually the catalytic
variable), of the form

Y(t,2)F(t,x) + H(t,z) = G(t).

The function Y (¢, x) is called the kernel. Let x(t) be a solution to the equation Y (¢, z(t)) =
0 which can be substituted into both Y(¢,z) and H(¢,z) legitimately. By substitution,
we have immediately G(t) = H(x(t),t) the value of the unknown function G(t), which
can be used to obtain F'(t,x) by substitution back to the equation.

Since there is a clear correspondence between combinatorial constructions and oper-
ations on generating functions, to write down a functional equation for the generating
function of a certain class, we usually just state a decomposition of elements in the class,
then convert it directly to a functional equation without passing by the exact form of
combinatorial specification.

Example 3: planar maps, Tutte equation and the quadratic method

We now consider general planar maps that we have introduced in Section 1.1.1 and
briefly analyzed in Section [[.2.1] Let M be the class of planar maps, with the statistics
fdeg of the degree of the outer face. Recall that we allow the empty map consisting of one
single vertex and no edge. We denote by M (t,z) the OGF of M with variable scheme
(fdeg, x). Since we are primarily interested in the number of planar maps regardless of
the degree of their outer faces, we only need to solve for M (¢, 1).

We will now write the Tutte equation for non-empty planar maps by considering the
effect of deleting their roots. As we have mentioned previously, there are two cases.

e The root borders only the outer face, which implies that it is a bridge, and its
removal breaks the original map into two planar maps of smaller sizes.

e The root borders the outer face and another face f, which implies that its removal
will “merge” f with the outer face, increasing the degree of the outer face.
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Two cases of the root After root removal Reconstruction

Figure 2.11: Cases in the Tutte equation for planar maps

Figure [2.T]] illustrates the two cases and the remaining maps after root removal. To
reconstruct a planar map in the first case, we pick a pair of planar maps, link their root
vertices by a new edge, then orient it from the first map to the second as the new root.
We thus add 1 to the size, and 2 to the degree of the outer face, since the new added root
borders the outer face twice. To reconstruct a planar map in the second case, we first pick
a planar map, and denote its root vertex by v. We then add a new edge from v to one
of the corners of the outer face. For a planar map whose outer face is of degree k, there
are k + 1 possible corners, since the new edge split the root corner into two. Figure [2.11
also illustrates the possible reconstructions, and we see that all non-empty maps can be
reconstructed in this way.

Root removal and reconstruction of planar maps gives the following Tutte equation
for M(t,x):
M (t,z) — M(t, 1)

x—1 '

M(t,z) =1+ te?M(t,z)* + ta
Some simplification and rewriting give:
to*(x — DM (t,2)* + (tz® —x + )M (t,2) + (x — 1 —taM(t, 1)) = 0. (2.7)
Let a =tz*(x —1),b=tr? —z+1and c =z — 1 — txM(t, 1), we have
aM(t,z)* + bM(t,z) + c = 0,
whose left-hand side can be made up to a square:
(2aM(t,z) + b)* = b* — dac.

We observe that P(z) = b* — 4ac, as a polynomial in z, has a double root. Therefore,
the discriminant of P(z) must be zero, which gives a functional equation for M (¢,1). By
taking the discriminant (the computation is not presented here, and is better to be done
with a computer algebra software), we have:

272 M (t,1)% — (18t — 1)M (¢, 1) + (16t — 1) = 0.
There is only one solution that is also a power series, which is

18t — 1+ (1 — 12t)3/2

M. 1) = 5412
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We denote by M,, = [t"]M(t,1) the number of planar maps with n edges. Again, using
the generalized binomial theorem, we find

M, - 23" 2n .
(mn+1)(n+2)\ n
By substituting the expression of M (¢, 1) back to (2.7]), we can also solve for an explicit
expression of M (t, ).

For asymptotic behavior, we observe that the unique dominant singularity of M (t, 1)
is p = 1/12, and near p we have

M(t,1) = ;l — i(l —12t) —4(1 — 12t)* + i(l —126)3% 4 O((1 — 12t)%/?).

By the transfer theorem (Theorem [2.6)), we have

M, = 73/271—5/212” +O(n""212").
This is because I'(—3/2) = 47%/2/3.

Our resolution of is an application of a more general principle called quadratic
method mainly for resolution of quadratic functional equations with one catalytic variable.
The idea is to make squares or higher powers on the left-hand side. Then any series z(t)
that cancels the left-hand side when substituted for the catalytic variable x will be a
multiple root of the right-hand side. The presence of a multiple root will then give several
equations containing x(¢) and unknown functions at once that can be used to solve for
the wanted unknown functions, then the original equation. In [32] there is a simultaneous
generalization of the kernel method and the quadratic method.

We have seen some essential tools we will need in the rest of this thesis: definitions
of various maps, the symmetric group and its representations, then finally the most im-
portant tool: generating functions. For generating functions, we have seen how to write
a functional equation from a recursive decomposition, how to solve these equations and
how to extract exact and asymptotic enumeration results from the solution we obtained,
all illustrated with examples. We are now properly equipped to visit various enumeration
problems concerning maps.
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Chapter 3

Generalized quadrangulation relation

In Section [2.1.2] we have seen that bipartite maps, which are maps with a proper 2-
coloring, can be generalized to m-constellations, which are maps with m colors on its
vertices that satisfy some extra conditions. This generalization works not only in the su-
perficial sense of the number of colors, but also in a deep sense of their rotation systems,
where factorizations into 3 permutations for bipartite maps are generalized to m+1 permu-
tations for m-constellations where m > 2 can be taken arbitrarily. It thus seems a natural
idea to generalize results on bipartite maps to constellations, especially those proved using
the character method. Since constellations can be used as a unified framework of various
factorization models in the symmetric group (¢f. Section [2.2), such generalized results
may also be extended to these models.

This chapter will be a demonstration of the character method (c¢f. Section[l.2.3)) in the
enumeration of maps. It is based on [65], in which an enumerative relation between con-
stellations and hypermaps is given, generalizing the quadrangulation relation. Definitions
of constellations and hypermaps can be found in Section [2.1.2] This generalized relation
is then proved using the character method. Definitions of characters of the symmetric
group and their relation with maps can be found in Section Although the character
method relies essentially on the algebraic structure of the symmetric group, our treatment
in this chapter has a more combinatorial flavor, using the Murnaghan-Nakayama rule to
deal with characters of the symmetric group.

3.1 Motivation

In [98], the following strikingly simple enumerative relation was established:

7

g
E g Z 49~ zB 9 1,21) 4937(1577£) + 49—137(551»2) + B(D 29)‘

Here, for D € NT, we define B(g D) as the number of rooted bipartite maps of genus g with
every face degree of the form 2d with d e D, whose vertices are colored black and white,
rooted in a white vertex and with n edges such that k£ black vertices are marked. The
number Efffj)j is the counterpart for rooted (not necessarily bipartite) maps with the same
restriction on face degrees without marking. In the planar case, we have Efl% = Bffg),
meaning that a planar map with all faces of even degree is always bipartite. The situation

in higher genera is more complicated, where every map whose faces are all of even degree

o7
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Figure 3.1: An example of a 5 x 6 grid on a torus

is not always bipartite. Figure |3.1| gives such an example of a 5 x 6 rectangular grid on a
torus, which is a quadrangulation but not bipartite.

The special case D = {2} had been proved in [96], and the maps counted in this case
are quadrangulations, which gives this special case the name quadrangulation relation.
It had been then extended to D = {p} in [97]. Despite its nice form, the combinatorial
meaning of the quadrangulation relation remains unclear, though some effort was done in
[98] to explore properties of the possible hinted bijection.

In enumeration of maps, there is a recurrent phenomenon: results on bipartite maps
can often be generalized to constellations (see e.g. [33], B34, [121]). It is because constella-
tions generalize bipartite maps. In the same spirit, we will generalize the quadrangulation
relation to m-constellations and m-hypermaps. See Section for the definitions of
these objects. As an example, our result in the case m = 3 gives rise to the following

relation (cf. Corollary [3.10)):

9 2t o041 +1
i 27— (1 —i0,2i—1
T
i=0 =0

Here, Cffé?,’jl;) is the number of rooted 3-constellations with n hyperedges, and hyperface

degree restricted by the set D, with a marked vertices of color 1 and b marked vertices
of color 2. The number Hr(f’; p is the counterpart for rooted 3-hypermaps without mark-
ing. We also give the same type of relation for general m. While our generalization of
the quadrangulation relation still has a simple form, it involves extra coefficients in the
weighted sum that do not appear in the quadrangulation relation. Explicit expressions
of these coefficients are given in Corollary using symmetries in m-constellations. We
then establish Theorem [3.16|stating that these coefficients are all positive integers, reveal-
ing the possibility that a combinatorial interpretation exists for our relation. Finally, we
recover a relation between the asymptotic behavior of m-constellations and m-hypermaps
found in [38], which can be seen as an asymptotic version of our relation.

Given a partition p - n, we denote by mpu the partition obtained by multiplying every
part in g by m. In [96], the quadrangulation relation was obtained using a factorization
of irreducible characters of the symmetric group on partitions of the form [(mk)"] using
a notion called m-balanced partition, which is a special case of a more general result for
characters evaluated on partitions of the form myu in an article of Littlewood [I11]. For
the sake of self-containedness, a combinatorial proof of this result is given.
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3.2 Rotation systems and generating functions

If we recall the definition of constellations and hypermaps in Section we will no-
tice that constellations and hypermaps only differ in the possession of a vertex coloring.
However, in the planar case, a hypermap is also a constellation, in the sense that every
planar m-hypermap can be given a proper vertex coloring to become an m-constellation.
Suppose that we orient edges in an m-hypermap in such a way that that the adjacent
hyperedge of an edge is always on the right. With this orientation, when we travel in
the m-hypermap following the direction of edges, we always see vertices with colors in
cyclic order: 1,2,...,m,1,2, etc. Now the only obstacle for an m-hypermap to be an m-
constellation is the existence of a directed cycle whose length is not divisible by m, but in
the planar case we can easily show that such a cycle does not exist using the Jordan curve
theorem. However, this is not necessarily true for higher genera, in which an m-hypermap
does not necessarily have a coloring that conforms with the additional condition to be an
m-constellation.

We now define the OGFs of m-hypermaps and m-constellations. We use x to denote
a sequence of variables xy,...,x,,, and [x; < f(i)] to denote the substitution of x by
xr; = f(i). We also introduce an infinite set of variables y = yi,%2,.... We define
H(z,y,t,u) to be the OGF of m-hypermaps, with  marking the number of vertices, y;
the number of hyperfaces of degree mi for each 7, t the number of hyperedges and u twice
the genus. Similarly, we define C(x,y,t,u) to be the OGF of m-constellations, except
that with z; we mark the number of vertices with color 3.

We recall from Section that rotation systems of an m-constellation with n hyper-
edges are transitive factorizations of the identity in S, of the form (oy,..., 0y, #) such
that

o1 O = id,.

Furthermore, each m-constellation with n hyperedges has (n — 1)! rotation systems. For
rotation systems of m-hypermaps, we observe that their duals are bipartite maps with
black vertices of degree m and white vertices of degree divisible by m. We can thus adapt
the definition of rotation systems of bipartite maps to m-hypermaps. For an m-hypermap
with n hyperedges, we first label hyperedges from 1 to n, then we label edges adjacent
to a hyperedge with label &k in counter-clockwise order with integers from (k — 1)m + 1
to km. With the convention that the root edge always receives label 1, for each m-
hypermap we have (n — 1)!m"™~! possible labelings. For a labeling obtained in this way,
we define o, (resp. 0,) to be the permutation whose cycles are cyclic counter-clockwise
orders of edges adjacent to each hyperedge (resp. hyperface), and for each vertex, we
consider its adjacent edges with a hyperedge on their right (seen from the vertex), whose
label, in counter-clockwise order, form a cycle of the permutation ¢. Figure shows
how these bijections act on edges of a hypermap. By our labeling process, the permu-
tation o, is fixed to (1,2,...,m)(m +1,m + 2,....2m)---(mn —m + 1,...,mn). A
factorization of m-hypermap type of size n is a pair of permutations (0., ¢) in S, such
that the cycle types of o, is mA for some A - n, and that o,0.¢ = id,,,, with the o, given
above. A rotation system of an m-hypermap is a factorization of m-hypermap type that
is transitive. We take the convention that the root edge is always labeled by 1, and now
each m-hypermap with n hyperedges has (n — 1)!m™~! rotation systems.

For a partition p, we define y, = [[.oyu. We recall that CI()) is the conjugacy
class of permutations with cycle type A. We can now define the following EGF Ry of
factorizations (0., ¢) of m-hypermap type, with x marking the number of cycles in o,
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Figure 3.2: Actions of permutations in a rotation system of an m-hypermap

the variables y the cycle type of ¢ and ¢ the number of edges divided by m, with one of
the permutations o, = (1,2,...,m)---(mn —m+1,mn —m+ 2,...,mn) fixed:

Ru(ry )2 Y 0SS sy,

n=0 " pkn oooep=idmn
0o€Cl(mp)

Similarly, we can also define the generating function R¢ of factorizations (o, ..., 0um, @),
with z; marking the number of cycles in o;, the variables y the cycle type of ¢ and ¢ the
size of the factorization:

Reley. )2 ¥ 00 Yy ][

n=0 """ pknoy...omp=idy, =1
eCI()

By taking the logarithm of the corresponding generating function, we can enforce
transitivity (cf. Section . We notice that taking the logarithm of Ry and R¢ is a
legitimate operation, since they start with a constant term 1 given by the case n = 0. We
now relate the OGF H of hypermaps to the EGF Ry of factorizations of m-hypermap
type. It is clear that log Ry is EGF of rotation systems of m-hypermap type, with ¢
marking the number of cycles in o,, which is equal to the number of edges divided by m.
Now, for a given m-hypermap with n hyperedges, it has m"~!(n — 1)! different rotation
systems, since by convention the root edge always receives label 1, which fixes the labels
of other edges sharing the same hyperedges, and there are (n — 1)! ways to distribute
other cycles of o, to other hyperedges, each has m possible ways to label its edges given
a cycle. For the genus g, we observe that an m-hypermap with n hyperedges, v vertices
and f hyperfaces has mn edges, n + f faces, and by Euler’s relation (1.1), we have
2g =2+ mn—n— f—wv. We thus have

i m—1)n—0(pu)—
H(I7¥7 tvu) = Z m 2 2 xe(¢)yuu2+( )n—2(n)—£(d)

n=1 M (06,04,¢) TOtation system
0o€Cl(mu)
tum—l n B B
o rr(L"(n—)l)' 3 3 (w1 y ) (3.1)
" pEn (05,04,4) rotation system
0o€Cl(mp)

o (10 —1 T
mu <(%( og Ry) | (zu™", [y; < yiu™ ], mtu ),
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where the factor 1/n! in the EGF log Ry is turned into 1/(n — 1)! by the operator td/ot.
Similarly, we can relate the OGF C' of constellations and the EGF R¢ of factorizations
o1 om¢ = id as follows:

Clxy.ton) = (o8 Re) ) (v 'L o g L), (32

From an algebraic point of view, the series Ry and R are much easier to manipulate
than H and C. We can use characters to express Ry and Ro. We should notice that, in a
factorization of m-hypermap type (0., ¢), we have 0,0.¢ = id with o, fixed instead of an
arbitrary permutation in C1([m™]). Therefore, suppose that o, and ¢ are of cycle types
A+ mn and mpu with u — n respectively, the number of such factorizations is simply
[K [mn]]K 2. We can thus compute Ry using the change of basis in Section
between (Ky)grn and (Fp)g-n, which leads to

tn
Ru(wy,t) =), = 3 " yu[Kpum [ KaKo,

n=0 " pknA-mn
" ((mn)!)? XX,
- Z ﬁ 2 xe()\)yl‘ 2z Z (f@)M[Km" ]F9
n=0 """ pnA-mn ASMp gmn
0
xz(x)y ((mn)!)Q 2 X)\mef X[m"]

W
n=0 n: pEnA-mn EXEmp O-mn (f9>2 (mn)'

:Zﬁ' Z (mn)!zy 'z mu Ny, Z fGXAX Xm/t

n=0 n: A=mn,ubn O-mn

(3.3)

I
i
SH
]

For R, we can directly use ([2.3) in Section to obtain

t" A0 ) — = _
Re(x,y,t) = Z nl Z (H xi( )> Yu Z(fe)(l )zulxinn!z/\(})xi(i). (3.4)
i=1

nz0 " ND) A ppn \i=1 on

To further simplify the expressions above, we define the rising factorial function ™ =
z(z+1) - (x + n — 1) for n € N. For a partition 6, we define the polynomial Hy(z) as
Hf(:(?( —i+1)®) . With this notation, we give the following expressions of Ry and Ro. We
recall that the quantlty 2, related to a partition p is defined as z, = [ [, m;!i"™, where m; is
the number of parts of size ¢ in 1. We then observe that z,, = [ [, m:!(mi)™ = m‘®z,.

Proposition 3.1. We have

RH(I’,X, t) = Z :L' Z yu Z X Xm,uHe )
n=0 """ ukn O—mn
2 Z vuze' O F (H Hmi)) .
n>0 m—n O-n =1

This proposition comes from direct application of the following lemma (Lemma 3.4 in
196]) to (33) and (B3).

Lemma 3.2. We have the following equality:
n,221ee f(’H@()

akn
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Since this lemma relies crucially on deep algebraic results in the representation theory
of the symmetric group, we choose to omit its proof here. Curious readers can find a com-
plete proof in [65], which relies on the elegant construction of irreducible representations
of S, in [136].

We can see that characters in Ry in Proposition are evaluated at partitions of
the form mp with g — n. In [96], X?’m”] is proved to have an expression as a product
of smaller characters, which is a crucial step towards the quadrangulation relation. This
factorization is also presented in Section 2.7 of [I00] under the framework of p-core and
abacus display of a partition. With a generalization due to Littlewood [IT1] that applies
to all partitions of the form mu, we will give a similar relation between m-hypermaps and

m-constellations in Section [3.4]

3.3 Factorization of characters

In this section we present the following result on factorizing x? , into smaller characters.
The notion of m-splittable partition will be defined later.

Theorem 3.3 (Littlewood 1951 [I11]). Let m,n be two natural numbers, and A + n,
0 = mn two partitions. We consider partitions as multisets and we denote the multiset
union by w. If 0 is m-splittable, we have

m
6 _ 0 _—1
Xmx = #A 5811y P SYOEIYOR
A gow () =) i=1

with sgn, and all 6% depending only on 6 and m.
If 0 is not m-splittable, X° , = 0.

An algebraic proof was given in [IT1]. For the sake of self-containedness, we will present
a combinatorial proof here. We will first give a natural combinatorial interpretation of
m-splittable partitions using the infinite wedge space. A brief introduction to the infinite
wedge space can be found in the appendix of [120], after which some of our notations
here follow. With this combinatorial interpretation, we will give a straightforward, purely
combinatorial proof of Theorem

3.3.1 Infinite wedge space and boson-fermion correspondence

We recall some definitions about the infinite wedge space taken from [120]. Let (k)ez be a
set of variables indexed by integers, and A be an associative and anti-commutative binary
relation acting as an exterior product. For S < Z, we define S, = SnNand S_ = Z_(\S.
We denote by A*/2 the vector space spanned by vectors of the form vg = s; A 89 A ...
with S = {s; > sy > ...} such that both S, and S_ are finite. The vector space A*/2
with the exterior product A is called the infinite wedge space.

We now define the creation operator ¢, and the annihilation operator ¢}, in a combi-
natorial way. By the definition of A*/2, we only need to specify the action of ¢, and ¢}
on vg for any set S such that both S, and S_ are finite:

0 ifkeS (—1)#ESI=Ryg gy if ke S
¢kvs = #{ES|>]€} . ) ¢kvs = . .
(—1) veslt Vsu{k} if k ¢ S 0 if £ ¢ S
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-7 -6 -5 —4 -3 -2 -1 O 1 2 3 4 5 6 7

Figure 3.3: Rotated diagram of the partition A = (4,2,2,2,1,1) corresponding to the
vector vg with S = {3,0,—-1,—-2, -4, -5, -7, —-8...}

Briefly speaking, the creation operator ¢ tries to add the element k into the set S. If k is
already in S, then it fails and gives 0. Otherwise, it adds k into .S, and gives the vector a
sign depending on the parity of the number of elements in S that are greater than k. The
annihilation operator ¢; does a similar operation to remove k£ from S. Readers familiar
with properties of exterior products will recognize that ¢ is the left multiplication by the
formal variable k, i.e. ¢x(v) = k A v for all v e A®/2, and ¢} is the adjoint operator of ¢y
with respect to the canonical scalar product. Let Ag be the subspace spanned by vectors
of the form vg satisfying that S, and S_ are finite and |S,| = |S_|. A set S such that
vg € Ay is called well-charged.

Partitions are in bijection with well-charged sets. Given a partition A = (A1, Ag, ..., ),
we draw its diagram in French convention, then rotate the diagram by 45 degrees in
counter-clockwise direction. The diagram is framed by a lattice path (thick line in Fig-
ure , called the framing path, consisting of two types of steps, one parallel to the line
y = x and the other to y = —x. This framing path eventually coincides with the line
y = —x to the left and y = x to the right. We can also consider A as an infinite sequence
by taking A\ = 0 for £ > [. We define the set Sy = {\; —i | ¢ € N}. We can see from
Figure that Sy is exactly the set of starting abscissas of down-going steps (parallel to
Yy =—x).

This map from A to S is a classical bijection between partitions and well-charged sets.
We illustrate the set S\ as a diagram of Z where each position indexed by an element
of Sy is occupied by a particle. This bijection is closely related to the boson-fermion
correspondence in the literature. More information about this presentation of partitions
can be found in [120].

For a partition A, we denote by v, the vector vg, corresponding to S). We now define
a new operator oy, = ¢,¢, . for a positive integer k and an integer p. The effect of oy,
on vy is trying to remove a ribbon of size k from the appropriate position of the Ferrers
diagram of A\. When it is possible, we have oy 0y = (—1)"*My, where u the partition
after removal of the ribbon. We notice that the induced sign is exactly the same as the
contribution of a ribbon to the sign of any ribbon tableau it belongs to. See Figure [3.4] for
an example. When the removal is impossible, i.e. there is no particle at position p + k or
there is already a particle at position p, we have o, ,vy = 0. Combinatorially, the operator
orp can be viewed as a particle jumping from position p + k back to position p, and the
sign it induces corresponds to the number of particles underneath this jump, that is, the
number of jump-overs. For example, in Figure [3.4] three jump-overs occur. We can also
see that ht(\/u) is exactly the number of jump-overs in the removal of the ribbon A/u.




64 CHAPTER 3. GENERALIZED QUADRANGULATION RELATION

-7 -6 -5 —4 -3 -2 -1 O 1 2 3 4 5 6 7

000 <@ @

Figure 3.4: Effect of 05 _¢ on vy with A = (4,2,2,2,1,1). We have 05_gvy = —v, with
p=(4,2,1)

Therefore, a ribbon tableau 7" of shape A and type p = (1, ..., p) can be identified as a
sequence of operators o, n, =+ Ouyps0puy py aPplied to vy such that the result is not zero.
In this case, we have

Opkpr """ Opz,paOpip UX = Sgn<T)Ue‘

We can thus use the Murnaghan-Nakayama rule (Theorem [2.2)) in the context of operators
okp to express characters of the symmetric group.

3.3.2 me-splittable partitions

We now define m-splittable partitions. Let S be a well-charged set. We define its m-split
to be the m-tuple of sets (Sp, S1, . .., Sm_1) such that S; = {a | ma+i € S} for ¢ from 0 to
m—1. A well-charged set S is called m-splittable if every set in its m-split is well-charged.
A partition A is called m-splittable if Sy is m-splittable. In this case, we define the m-split
(MA@ Am=1) of X to be the tuple of partitions corresponding component-wise to the
m-split of S).

Here is an example in Figure |3.5| of the m-split of an m-splittable partition. We take
m = 3 and we consider the partition 6 = (6,6,4,4,4,3,3). We can verify easily that 6 is
3-splittable. To obtain the 3-split of 6, we split the set Sy according to congruence classes
modulo 3, then rescale to obtain 3 smaller sets, and finally we reconstruct partitions
corresponding to the smaller sets.

As a remark, comparing our terminology with the one in [I11], it is easy to see that
an m-splittable partition is exactly a partition with an empty m-core, and in this case,
its m-split coincides with its m-quotient. Moreover, we can easily show that the notion
of “m-balanced partitions” used in [96] and [98] is exactly the notion of m-splittable
partitions. An advantage of the point of view here is that it is much more intuitive and
avoids technical lemmas when dealing with these objects as in [96].

3.3.3 Combinatorial proof of Theorem |3.3

We are now ready to give a combinatorial proof to Theorem [3.3] alongside with explicit
expression of sgn, and all #%). Essentially, using the Murnaghan-Nakayama rule, we
establish a bijection between ribbon tableaux of shape 6 and content mA\ and sequences of
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Figure 3.5: Example of a 3-splittable partition, alongside with its 3-split
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m ribbon tableaux Ty, . . ., T,_1 of shape 8© ... 00"~ respectively and total content \.
Readers are referred to [I30] for more on ribbon tableaux and the Murnaghan-Nakayama,
rule. The idea is that the removal of a ribbon s of length multiple of m from the partition
A only affects elements in Sy in one congruence class modulo m. Since one congruence
class corresponds to one component in the m-split, the removal of s can be reduced to
the removal of a smaller strip s’ in the corresponding component in the m-split. We then
deal with the sign issue.

Combinatorial proof of Theorem [3.5
We try to evaluate xY,, with the Murnaghan-Nakayama rule (Theorem .

For any integer p, k with k& > 0, the operator o,,, only affects particles occupying the
n-th position with n = p mod m. For any S, 0y,kmp+: only changes the component S;
in the m-split, and its effect is equivalent to oy, applied on S;. Therefore, the operator
Qi preserves the m-splittable property of a partition. We then have Y , = 0 for  not
m-splittable, since the empty partition is m-splittable.

Now we suppose that 6 is m-splittable. Let (8 ... (D) be its m-split. We recall
that the operator o,k mp+i ON vy acts only on 0 and acts as the operator okp- A ribbon
tableau Ty of shape 6 and of type mA can be considered as a sequence of operators of the
form 0,1, on vy, which can be separated into m sequences of operators of the form oy,
on all #’s. This induces a surjective function that sends a ribbon tableau of shape 6 and
content mA to m ribbon tableaux Ty, ..., T,,_1 of shapes 8 ... (=1 and the union
of their types is \. We denote by A, ... A"~ the content of Ty, ..., T,,_1 respectively.
Different ribbon tableaux of the same shape and content can be mapped to the same
m-tuple of smaller ribbon tableaux, because when separating the original sequence of
operators, we lost some information on their ordering. The multiplicity will be considered
later in the proof.

We now consider the signs of ribbon tableaux. We recall that the sign sgn(7") of a
ribbon tableau T. We denote by j(T') the number of jump-overs in the corresponding
operator sequence, and we have sgn(T") = (—1)’"). In Ty, there are two types of jump-
overs: those involving particles in the same congruence class, and those involving particles
in different congruence classes. The number of jump-overs of the first type is denoted by
Jendo(T), and that of the second type Jinter(T). We have j(T) = Jendo(T) + Jinter(T). By
definition, jondo(T) = Sy" 5(T3). For jine(T), we can check that the parity of Jier(T)
is preserved when commuting any two operators o,,i,, and o, p,, and when replacing
any operator o, (k+1)p DY Omip—mkOmip- With these two transformations of operators, we
can break operators of the form 0, , into those of the form o,,, and reorder them by p,
and the sign remains unchanged. Therefore, the parity of jiyer(7') depends only on §. We
thus define

sgny & (—1 )Jmeer(T)

and we have sgn(T) = sgn, [ 7, sen(T}).

To evaluate xY , with the Murnaghan-Nakayama rule, we consider the sum over the
sign of all ribbon tableau Ty of shape # and of content mA. We denote by t; the multiplicity
of k as parts in A, and ?;; the multiplicity of £ in A9 We have t, = Z;":_Ol trj. By the
surjective function and the sign relation between T and Ty, ..., T,,_1 mentioned above,
we have the following formula:

disen(Ty) = )] D seny (ﬁl Sgn(ﬂ)> 11 (tk,(h e )

Ty AD e N =X\ Ty, Tt i=0 k>0 s bem-1
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This is essentially a double-counting formula. The multinomial factor in the final sum-
mand is in fact the multiplicity of the surjective function, which stands for the number of
ways to arrange a sequence of t;, operators of the form o,,;, with the same k to achieve
the same sequence of A9 ... A™=D_ Given such t, operators, the only case forbidding
two operators ok, and ok, from commuting is that they are applied to the same
component in the m-split of A, i.e. p; and py come from the same congruence class mod-
ulo m. For the congruence class 4, there are t;; such operators whose relative positions
cannot be changed. We thus have the multinomial.

We conclude the proof by the Murnaghan-Nakayama rule while noticing the following
equality coming from zy = [ [,_, k™ tx!:

m—1 . k;t Zm_lt tk‘ tk
| | -l _ | | k=™ Zij=0 Yk,j — | |

= ZA(Z) ' tk O'tk 1' e tk 1' tk 0 tk 1 ‘
i=0 k>0 0-0k,1+ m=1 0 05 s Uem—

As an application of this combinatorial point of view, we also have a factorization
result on the polynomial Hy for m-splittable partitions 6.

Lemma 3.4. For an m-splittable partition 60 — n, we have

Proof. Let @ -~ mn be an m-splittable partition and (0, ... 8™=Y) be its m-split.

Consider an arbitrary ribbon tableau 7' of form 6 and content [m"]. We denote by

T, ..., T, the corresponding ribbon tableaux of form 8, ... 6™ respectively, as in the

proof of Theorem . Each cell w of #® corresponds to a strip s of length m in 7.

Moreover, we can see that the contents of cells in s are exactly mc(w) — i + 1, me(w) —

i+2,...,mc(w) — i+ m. These facts are independent of the choice of T. We thus have
m—1

Hy(z) zn(x+c(w)) :ﬁ 1_[ 1__[(:17+mc(w)—i+j+1)

welh i=1 ef(i) j=0

m m—1 . .
mn r—i+j7+1
= e
e [T T (5 em)
r—1+7+1
Hyiy | ———— | . O

As a final remark, the operation in Figure is sometimes called drawing the abacus
display in some literature in algebra. Readers are referred to, for example, Section 2.7 of
[100] for more details on p-core, p-quotient and abacus display, even though there is only
a specialized version of Theorem

3.4 Generalization of the quadrangulation relation

In this section, using Theorem we establish a relation between m-hypermaps and
m-constellations that generalizes the quadrangulation relation. We then recover a result
in [38] on the asymptotic number of m-hypermaps related to that of m-constellations.
Finally, by exploiting symmetries of the generating function, we are able to arrange our
generalized relation in a form where all coefficients are positive integers, for which there
might be a combinatorial explanation.
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3.4.1 From series to numbers
We start by the following proposition that relates the series Ry and R¢ using Theorem [3.3]
Proposition 3.5. We have the following relation:

gz, y,t HR(;([ x_njﬁlﬂ],[g/zezﬂ,mmt)

Proof. We take the expressions of Ry and R¢ from Proposition [3.1] We observe that, in
the expression of Ry, we need to evaluate characters of the form Xfm"] and x? ,. Since
[m"] = m[1™], all these characters are evaluated at partitions of the form mA. We thus
only need to consider those  that are m-splittable according to Theorem For such 6,
let (01, ...,00™) be its m-split. We have the following equality derived from Theorem :

m 9<l> (3)

X = Zusgy ) H “((Z), Xfmny = 1! sgnel_[ |9(

M<1)U Uu(m) MZ M

The formula for [m"] is drastically simplified, because in this case A = [1"]. In the sum
over multiset partitions A = A w--- &A™ the only way to have a non-zero contribution
is that |A\(D| = |§®)|. Since A = [1"] is formed only by parts of size 1, we thus only need to
consider A®) formed by parts of size 1. All the z&i)’s are now just factorials, and we know
that Xﬁn] = f* for any partition g — n. We thus have the formula for [m™].

We observe that the only unknown factor in the equalities above is sgn,, which is never
made explicit. We only know that it depends only on . However, in the expression of
Ry, the two characters come in the product me,X[m" which cancels out the sign sgn,.

We now use the equalities for the two characters and Lemma to rewrite the ex-
pression of Ry in Corollary in order to factorize Ry into a product of Rs evaluated
on different points as follows:

RH(:E Y, t)

=Z Zm”“z Wi D X)Xy Ho ()
n>0 m—n O-mn

- tn > m= 2y,
n=0 p=n

pD (M) =

2 (ﬁ Z{(;) (H f9<2>> (ﬁﬁHe<i) (x_i;j+1)>

O-mn i=1 i=1 j=0

6o 90) m—1 . .
f () r—1+7+1
= 2 )t Y m T Wy, H o T o (S
H !z () m
n=0 puEn O—mn = 7=0
1D @M =y

(m™t)™ o(u®) ) FIO) 9( ) rT—1i1+7
- Z H , Tm ”m Z 7 X0 H Hy —

N(lﬂ_nh“'vll(m)}_nm =1 n;=0 )}_nl j=1
= T —i+
e (5 - 2 ,mmt>
m
=1
B rT—7+1 i
:HRCQ%‘— . ][zw—y] mt) -
m
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This relation between Ry and Ro can be translated directly into a relation between
the series H(x,y,t,u) of m-hypermaps and the series C(x,y,t,u) of m-constellations,
resulting in our main result as follows.

Theorem 3.6 (Relations of series of constellations and hypermaps). The generating func-
tions of m-constellations and m-hypermaps are related by the following formula:

H(z,y,t,u) :mic([%(—x—l—(zm—])u] , [yz — %] ,mm_lt,u).

Proof. This comes directly from a substitution of (3.1) and (3.2)) into Proposition [3.5]
Note that the product of R¢ is turned into a sum of C' by taking the logarithm. [

We define HY9 (z,y,t) = [u¥]H(x,y,t,u) and CY(x,y,t) = [u*]C(x,y,t,u) to be
respectively the OGFs of m-hypermaps and m-constellations of genus g. We have the
following corollary concerning m-hypermaps and m-constellations with given genus.

Corollary 3.7. We have the following relation between the generating functions H9) and
) -

9 202k [(m s m 2k

j=1 \i=1
Proof. We compute H9 (x,y,t) = [u?9|H(z,y,t,u) directly as follows:
(W] H (,y,t,u)

[u2]Clo—) (lxz - W] ’ [yi - &] ,mm‘lt)

() oo
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To obtain the final form, we then simplify the formula above with the fact that each term
in C has the form z{* - - - 20myt/2 with vy +- - - + v, —mfo + |¢| + fo = 2 —2g, according
to the Euler formula. m

These results can be further generalized. Let D be a subset of N*. We define (m, D)-
hypermaps and (m, D)-constellations as m-hypermaps and m-constellations with the re-
striction that every hyperface has degree md for some d € D. We denote by Hp(x,y,t, u)
and Cp(x,y,t, u) their generating functions respectively. We have the following corollary.

Corollary 3.8 (Main result in the form of series). We have the following equations:

Hp(z,y,t,u) = mi Ch ([ml «— QH(Z_])U] , [yi — %] ,mmlt,u>

m

(i(i _j)ai)%(jgk)) ([2: < 2], 3.1).
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Proof. By specifying y; = 0 for i ¢ D in Corollary [3.7, we obtain our result. H

By taking m = 2 and D = {2}, {p} or D arbitrary, we recover the quadrangulation
relation in [96] and its extensions in [97] and [98] respectively. We define Cflgnzl,’j “m=1) ¢ be
the number of rooted m-constellations with n hyperedges, and hyperface degree restrlcted
by the set D, with a; marked vertices of color ¢ for ¢ from 1 to m —1. The number Hn
is the counterpart for rooted m-hypermaps without markings. These numbers can be
obtained from corresponding generating functions by extracting appropriate coefficients
evaluated at y; = 1.

According to Theorem 3.1 in [38], the number Cn D = C’(g 0200 o (m, D)-constellations

with n hyperedges without marking grows asymptotically in @(m g=1) pr pr ) when n tends
to infinity in multiples of ged(D) for some p,, p > 0. Using Corollary , we now give
a new proof of Theorem 3.2 of [38] about the asymptotic behavior of the number of
(m, D)-hypermaps.

Corollary 3.9 (Asymptotic behavior of (m, D)-hypermaps). For a fized g, when n tends
to infinity, we have the following asymptotic behavior of (m, D)-hypermaps:

Hﬁbgr)n D~ m2g0n m,D*

Proof. We observe that, in the second part of Corollary [3.8] for a fixed k, the number of
differential operators applied to C}) (9=%) Joes not depend on n, and they are all of order 2k.
Since in an m-hypermap, the number of vertices with a fixed color ¢ 1s bounded by the
number of hyperedges n, the contribution of the term with k = ¢ is O(n36—t=1+2 % D)=

O(n3l-1- 125,0” p)- The dominant term is therefore given by the case k = 0, with Cn ‘mD =
O(n2le-1pn Prm. D), and we can easily verify the multiplicative constant. O

Our generalized relation, alongside with its proof, is a refinement of the asymp-
totic enumerative results established in [38] on the link between m-hypermaps and m-
constellations.

3.4.2 Positivity of coefficients in the expression of H

In Corollary , the OGF H9 of m-hypermaps of genus g is expressed as a sum of OGFs
C9=F) of m-constellations with smaller genus applied to various differential operators. It
is not obvious that this sum can be arranged into a sum with positive coefficients of all
terms, but we will show that it is indeed the case. For m = 3 and m = 4, we have the
following relations.

Corollary 3.10 (Generalization of the quadrangulation relation, special case m = 3,4).
Form = 3,4, we have

g 24 1 14
Coin 2204 (1) (g—ie2i-0)
H(Q) _ 32g 21 O(Q 1,£,21 7
n,3,D ;:0 ;_0 3 n,3,D

g o0 tot
, 2(352% 4+ (=1)72%) _(g—ier t02i—t1—0
2g—2 L1,02,
e T
01,02=0,01+02<2i
We notice that the coefficients are always positive integers. This is not a coincidence.
In fact, by carefully rearranging terms, we can obtain the following relation, whose proof

is the subject of this section.
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Corollary 3.11 (Generalization of the quadrangulation relation, for arbitrary m). With

certain coefficients c,(c ) k., € N, we have

g
(9)  _ 29—2i (m) (g=iket,eokm—1)
Hn,m,D - Z m Z Ckl ..... kmflcn m,D

k14 +km_1=2i

In the following, we prove these two corollaries. We start from the observation that the
series C19(x,y, ) is symmetric in 2;. This can be seen algebraically from the expression of
R¢ in Proposition [3.0], or bijectively with a “topological surgery” that permutes the order
of two consecutive colors (details are left to readers). We can thus deduce the following
property of C'9)

Proposition 3.12. Let ki, ks, ..., k, be natural numbers and o € S, an arbitrary per-
mutation. We have the following equality.

Qlrt-ethm Ok1++km
(C(g)) ([ZBZ - IL’],X, t) = k A ko(m) C(g) ([‘rl A x]a}fa t)

kl km o
oxyt - - - ke ox,"" - Ox

Proof. Since in the evaluation all x; are given the same value z, any permutation of
variables z; in the series has no effect on the evaluation. O

(2K)

We now define a new sequence of differential operators D'“*). For m = 2p even, we

define
» ; 2%k
DM 9 2 > .

(i =)
For m = 2p + 1 odd, we define

D(Qk)‘ﬁf(i(i— - 1) > —1-22(22—] 8) :

i=1 i Li
Using these differential operators, we can rewrite the equations in Corollary as follows.

Proposition 3.13. We have the following equation.

i(i(z’—j) j) CO) | ([as 2], x.0) = (DPICUD) (i — o], v,

j=1 \i=1

Proof. We observe that, according to Proposition for any g and j,

(B0

i=1

> C(g) ([J]Z A l‘],}f, t)

_ (i(—(erl—i)Jrj)ai) C9 ) ([w; < 2], y,)

— <i(i—(m+1—j))£i> C9 | ([x; < =], y.1).

With this equality, the proposition is easily verified. O
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We define two kinds of coefficients e,(C g o, and d,(g?_.’kmf | for k; = 0 as follows:

2 ] =g e

1<i<m,i#j
d ) def 22] 1€kT)jm 1 (m=2p)
bk S it S 9 =2 )

We can now rewrite the equation in Proposition with these coefficients.

Proposition 3.14. For any m > 2, we have

(DEOCW) ([ — 2],y 1)

2k (m) 0%
= E dp" C9 ) ([ < x],y,1).
<kl+m+km_1=2k (kl, . km—1> ki,...;km—1 axlfl . aka,1 ([ ] )

m—1

Proof. For m = 2p,

2k (m) 02k
- d . C(g) Ty < X, >t
( S (e i T € ) e v

ki+..+km_1=2k
The computation for m = 2p + 1 is similar. O]
We will now show that the coefficients d(m)k are all positive integers divisible by

m—1

m. We start with a lemma concerning e/l(€1 ™). “k_y» Which we will use for telescoping.

(m),j
= ‘ekla“-)kmfl :

(m),j
kl,...,km71 :

Lemma 3.15. For j < m/2, we have ‘eél )’J;:L .

. m),j+1 j
Moreover, if k,,—; = 1, we have ‘e,(ﬂ )jk < L=

m—j

m—1

Proof. The result is a direct consequence of the following formula coming from the defi-

m),j
nition of ek1 o1

N S
(m)j+1  _ (_—J (m).j
Chipeokm_1 — (m _ ]) €11 [
We can now prove the positivity of dg;"f“’kmfl.
Theorem 3.16. For allm > 2 and kq, ..., k,_1 natural numbers, ci,(;l'?._’/,%k1 1S a positive

integer. Moreover, it is always divisible by m.
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Proof. By definition, d

For the case ky = --- = k,,_1 = 0, we have d( "0 > 0 by definition. We now suppose
that all k; are not zero. Let t be the largest index such that k; > 0, we then have
kivy =+ =kp_1 =0. If t <m/2, we have dl(cT?..,an > 0, since all terms of the sum in
the definition are positive. We now suppose that ¢t > p for m = 2p and m = 2p + 1. We
always have e,(CT)”,Z;i .= t* > 0 in this case.

We start from the case m = 2p. According to Lemma [3.15] we have

m) _
kh,ml QZekl,,ml

> 2(m — el L, = 200 = p) |efm

is an integer.
----- mfl

) --7k'm71
m),m—t p m),m—t
> 2(m —t) <€1(<:13..7km_1 - (1 - *> el(cl,?..,k:m_1>

t
2p(m - t) (m),m—t
= n €k yekim—1 0.

The computation for the case m = 2p + 1 is similar.
d(m) __ m),p+1 2
k1,....km €1 ekim—1 + Zekl, -k

> 2(m — t)e (m)”,;t — (2t — 2p + 1) e

kml

m).m— 2]? -1 m)m—t
= ( ) (26( ), i (2 - n ) 61(4317?--7197711)

Zp—1)(m —1) m)m—t
== t 61(617?“7]6’"7471 > O

The positivity to be proved follows from the computation above.

For divisibility by m, we only need to observe that the value of e,(c1 m).d "k, modulo m

does not depend on 7, and that alkl’m,km_1 is the sum of m such coefficients. O

We denote by C’T(f;)]i}b"’km‘l)(y) the OGF of m-constellations of genus g with n hyper-
edges, k; marked vertices of each color ¢« and D as restriction on degree of hyperfaces.

We define similarly Hflg)n p(¥). They are the series versions of numbers C’ng Fskm1) and

H (gr)m p, with y; marking the degree of each hyperfaces.

n,
We can now rewrite Corollary into a more agreeable form.

Corollary 3.17. We have the following relation, with all coefficients positive integers.

g
= 29—2 (m) (9Kt erskm—1)
N Z m Z Cht oo 1Cn,m,D (X)

k1yeeoskm—1=0
ki4+-+km—_1=2¢

(m) _ =1 (m)
Here, Chpibop1 T dkl,...,kz

-1 m—1"

, dl(cT?..,kmf | is a positive integer divisible by m,

Proof. Since according to Theorem |3.16

c(m) is always a positive integer
k’l,...,k‘m71 y p g N

The corollary now follows directly from Corollary [3.7 and Proposition [3.13] [3.14] with
the observation that successive derivation of x; means marking vertices of color ¢ with
order, and the restriction imposed by D can be established by specifying y; = 0 for any
i ¢ D. O
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We have thus proved a generalization of Corollary |3.11} The corollary above actually
tells us that Corollary holds even if we refine by the degree profile of hyperfaces. We
can obtain Corollary [3.11] by specifying all y; to 1.

Our result could hint at a combinatorial bijection between m-hypermaps and some
families of m-constellations with markings that preserves the degree sequence of hyper-
faces, although this might be hindered by the fact that the combinatorial meaning of
the coefficient C](!ln;?wkmfl itself is not clear. A better understanding of these coefficients is

indispensable in the quest of the hinted bijection.



Chapter 4

Enumerating constellations

In Section 2.2 we have mentioned the importance of m-constellations as a model of
factorizations of the identity in the symmetric group, since it can serve as a unified
framework of maps, classical and monotone Hurwitz numbers. We are thus interested in
their enumeration, especially in higher genera, which can lead to a unified formulation of
similar enumeration results such as those in [85, [79)].

Although we are mostly interested by m-constellations in higher genera as a unified
framework, the planar case is also of particular interest. The enumeration of constel-
lations was first started for the planar case, and an enumeration formula of planar m-
constellations was obtained long ago in [33] using bijective methods. However, the same
result was never obtained in full generality by solving functional equations. We would
like to revisit this case by resolving a functional equation using a method dubbed the
“differential-catalytic” method, originally developed in [30] for enumeration of intervals
in the m-Tamari lattice. Although m-constellations and intervals in the m-Tamari lattice
seem to be of very different nature, their generating functions are in fact both governed by
functional equations with unlimited repeated iterations of an operator, which are difficult
to solve in all generality due to the arbitrary number of iterations. By this resolution,
we want to demonstrate the potential versatility of the differential-catalytic method and
fathom its potential to be generalized. It is also worth noting that there are curious bijec-
tive links from intervals in the Tamari lattice and its generalizations to different classes
of planar maps, which will be studied in the next chapter. We thus have an intriguing
question: Why these intervals are so deeply connected with planar maps? A deeper un-
derstanding from the comparison of functional equations for the two classes in the lens of
the differential-catalytic method may help us to answer that question.

This chapter concerns the enumeration of m-constellations of a fixed genus g by solving
functional equations satisfied by their OGFs. It consists of three parts. In the first part, we
will explain a Tutte decomposition of m-constellations and extract a functional equation
satisfied by their generating functions from this decomposition, for both the planar case
and the higher genus case. In the second part, we will solve the planar case g = 0 for
arbitrary m, using the differential-catalytic method from [30]. In the third part, we will
solve the functional equation for arbitrary genus g in the case m = 2 (bipartite maps)
using an inductive method inspired by the topological recursion method.

This chapter is partially based on an unpublished work and the article [42], both
in collaboration with Guillaume Chapuy. Related definitions about constellations and
generating functions can be found in Chapter 2. Since we will deal with generating
functions of all sorts in this chapter, readers are referred to Table [2.1] on page for

75
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{1,3,6},{2}, {4}, {5}

Figure 4.1: Example of root hyperedge removal on a 6-constellation

notation, which will be used in a nested way.

4.1 Functional equations

For f a hyperface in an m-constellation, we say that f is an internal hyperface if f
is not the outer hyperface. We denote by F,,, = F,.4(t, z;p1,p2,...) the OGF of m-
constellations of genus g with ¢ marking the number of hyperedges, x marking the degree
of the outer hyperface divided by m and p, marking the number of internal hyperfaces of
degree mk. In this section, we aim to write a functional equation for £}, 4. Every F,, ; is
in the ring Q[x, p1, pa, . . .][[t]] of formal power series with coefficients in Q[x, p1, pa, .. .],
since the total degree of hyperfaces is bounded by m times the number of hyperedges.

We start with the planar case g = 0. As always, we follow the philosophy of Tutte:
study how a constellation breaks into smaller constellations by the removal of a building
block. However, simply removing the root edge does not work due to the strict structural
constraint in the definition. For constellations, we will instead remove the root hyperedge.
Such removal will break a planar m-constellation into several connected components, and
it is easy to verify by definition that every connected component is an m-constellation.
Figure [4.1] gives an example scheme of how removing the root hyperedge of a planar 6-
constellation breaks it into smaller constellations, which we call components. We allow
the empty constellation as a component. Then, for each component, we construct its set
of “touching colors”, which are the colors of vertices by which the component is connected
to the original root hyperedge. By collecting the set of touching colors of all components,
we thus obtain a set family of colors from 1 to m, which is clearly a non-crossing partition,
i.e., a set partition P of the set {1,2,...,m} such that, for any P;, P, € P, and for any
1,k € P, and j,/ € P, such that + < k and j < ¢, we can never have i < 7 < k < {. The
reason is that every such quadruple (7, j, k, £) will introduce a crossing of two components
in the original constellation, which violates the planarity. Since there are finitely many
non-crossing partitions with given m, in principle we can write the functional equation as
a sum of terms indexed by these non-crossing partitions.

This is exactly the approach taken by Bousquet-Mélou and Jehanne in [32]. They
showed that it is possible to write a functional equation with one catalytic variable for pla-
nar m-constellations with arbitrary m, and with the powerful machinery they established
in the same paper, they proved that the OGF F,, (¢, z;1,1,...) of planar m-constellations
(without refinement on hyperface degrees) is algebraic, and their approach can be easily
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Fusion

—_—
existing

Figure 4.2: Construction of a constellation, step by step

generalized to prove the algebraicity of F, o(f, z;p1, ..., px) which restricts the degree of
hyperfaces to be at most mK. However, functional equations obtained in this way are
too cumbersome for exact solution. As an evidence, in [32], only equations of 2- and
3-constellations are written and solved explicitly. If we want to solve for the generating
function for all m, it seems that we need a simpler equation.

We now look at the root hyperedge removal in greater detail. Instead of removing the
root hyperedge as a whole, we try to detach its vertices one by one from other parts of
the constellation, starting with the vertex of color m and ending with that of color 1. In
the inverse direction, to construct a constellation, we first construct the root hyperedge,
then attach its vertices from color 1 to m one by one to either a new component or an
existing component when vertex coloring and planarity permit. Figure illustrates an
example of such a construction. Suppose that we are about to attach the vertex v; of
color ¢ of the root hyperedge. We can see that there are only two basic operations:

e Planar join case: take a new planar m-constellation as a new component, and
attach v; on the root hyperedge to the next corner on the outer hyperface of the
new component of color ¢ in clockwise order, starting from the old root corner of
the new component, in the unique way that preserves the orientation;

e Cut case: attaching v; to another corner of the same color of the outer hyperface.

In the planar join case, we join the outer hyperface of the new component with the existing
outer hyperface, while in the cut case, we cut the outer hyperface into two to create a
new hyperface. Under the chosen order of attaching vertices, to guarantee planarity in
the cut case, we must identify the current vertex with a vertex of the same color adjacent
to the outer hyperface. The planar join case, on the other hand, always works.

We now write a functional equation for F,, o by translating this procedure of vertex
attaching into operations on OGFs. For intermediate objects during vertex attaching, we
use the same variable scheme as m-constellations for their OGF, except that x now marks
the degree of the outer hyperface divided by m then minus 1, and ¢ marks the number of
hyperedges minus 1. This modification simplifies the treatment of the cut case. Suppose
that we are about to attach the vertex of color ¢, and the current outer hyperface is of
degree md. Then there are exactly d — 1 possible existing corners to attach, since we
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cannot attach the new vertex to itself. This fact is accounted by the “minus 17. Similarly,
until all vertices are properly attached, we do not account for the new root hyperedge.
It is after all attachings that we make up the missing factor xt. The initial state is thus
represented by 1. We now translate the two basic operations into operators on formal
power series.

e Planar join case: In this case, all statistics are additive. Therefore, the operator
for this case is simply the multiplication by £, .

e Cut case: Suppose that we have an intermediate object with weight xz*p,, whose
outer hyperface has degree d(k + 1). We have k choices to attach the new vertex,
and in all choices the sum of the degrees of the new hyperface and the new outer
hyperface will be d(k + 1). Each choice gives a different distribution of degrees
among the two hyperfaces. Therefore, the weights of the k resulting objects are
2" pipa, 2 2papy, . .., 2%prpa. Here 20 is allowed because it stands for an outer
hyperface of degree m, which is a perfectly valid situation. We thus define the
following linear operator {2 on power series of x by

k
Vi >1,QzF = Zxk’ipi.

=1

Figure [4.3] illustrates the two cases. The only planar m-constellation that cannot be
constructed in this way is the “empty” constellation with weight 1. We thus have the
following functional equation for F}, o:

Theorem 4.1. The generating function F,, o of planar m-constellations defined previously
satisfies the following functional equation:

Fio=1+at(F, o+ Q)"(1). (4.1)

Proof. A planar m-constellation is either empty or not. The contribution of the only
empty constellation is 1. For the contribution of other planar constellations, we consider
its construction starting from the root hyperedge by either attaching a new component or
cutting out a new face using each of the m vertices adjacent to the root hyperedge. The
operation on each vertex can be described as the operator F, o + (). Starting from 1 that
stands for the root hyperedge before all the operations, we apply m times the operator
F,. 0+, each standing for the operation on one of the m vertices, and finally we multiply
by xt to rectify variable markings of statistics to obtain the contribution of non-empty
planar constellations. We thus have (4.1]). O]

We now consider the higher genus case g > 0. We proceed by the same vertex attaching
procedure. Suppose that we are about to attach the vertex v; of color ¢ of the new root
hyperedge. Let C® be the object we obtain after attachment. The detachment of v; in
C® either disconnects the object into two parts, or it doesn’t. When it doesn’t, according
to whether the two edges adjacent to both v; and the new root hyperedge are adjacent to
the same hyperface or not, the detachment can split a hyperface into two or fusion two
into one. In the reverse direction, we have the following cases for vertex attaching.

e Separating join case: We take an m-constellation C' of arbitrary genus as a new
component, and attach v; to the next corner of color i of the outer hyperface of C,
starting from the root corner of C' in clockwise order.



4.1. FUNCTIONAL EQUATIONS 79

Figure 4.3: Two ways of attaching a new vertex

e Cut case: We attach v; to another corner of the outer hyperface with the same
color, which splits the current outer hyperface into a new internal hyperface and the
new outer hyperface.

e Non-separating join case: We attach v; to another corner with the same color of
an internal hyperface f. This attachment will merge f with the outer hyperface.

We now translate the three cases into operators. The separating join case is similar to
the planar join case for planar constellations, and we only need to pay attention to the fact
that the genus of the new component now adds to the total genus of the m-constellation.
The cut case is exactly the same as in that for planar constellations. The only new case
is the non-separating join case illustrated in Figure .4, whose attaching procedure can
be separated into several steps: first choose the degree mk of the internal hyperface to
merge, then choose an internal hyperface f of such degree, finally attach the vertex to
one of the k possible corners of f. The choice of f can be translated into the pointing
construction related to variable py, which gives the operator %, and the merging of f

with the outer hyperface translates to the multiplication by z*p;*. The whole procedure
in the non-separating join case is thus translated into the operator

P gt O (4.2)

k>1 Opr,

We also notice that the non-separating join case adds 1 to the genus, since it requires an
extra “handle” for the attachment.

We now write a functional equation for Fj,, with g > 0 that depends on OGFs F ,,
in lower genus ¢’ < g. We use an extra variable w to control the genus, and we do not
count the “empty” constellation, since we consider it to be planar. Under the previous
case study, we thus have the following theorem:

Theorem 4.2. The generating function F,,, of m-constellations of genus g satisfies the
functional equation

Fym = at[w] ( D w' Py + Q4 wr> (1). (4.3)

0<g'<yg
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G LG = Spor kot -G

Figure 4.4: Non-separating join case in the construction of constellations of higher genus

We notice that the variable w is only for simplifying the expression, and in principle
we can write a functional equation without using w by exhausting all possible cases of
making up the correct genus. For smaller m, such as m = 2, 3, this can be done by hand:

F,, = at ( D FpaFpo+QF,+ FFg_172> ,

g1+g2=g

Fys = It( Z Fy 3Fg,3Fg3 + Z (U Fy3Fys3) + Fou 3(QFy,3))

g1+g2+9g3=g g1+g2=g

+ Z (D(Fy 3Fy3) + Fp3(TFy,3)) + QQF, 3+ (QI + TQ)F,_1 3 + ]_—‘FFg_Zg) .

g1+g2=g—1

As a remark, we notice that we can also keep track of the number of vertices of each
color in the functional equations with slight modifications. Let F, be the generating
function of m-constellations with ¢; marking the number of vertices of color .. We observe
that a new vertex is created only in the case where we attach the empty constellation.
Therefore, by separating the contribution empty constellation from the generating func-
tion of planar constellations and replacing it with ¢;, we obtain the following functional
equations for Fy, :

Fom =1+t (H (Fom—1+c+ Q)) (1),
i=1
Fr, = wt[w?] (H (F(;"m —14+ca+ Z w9 Fy  + Q + wF)) (1).

For the resolution, we first observe that F;, ; contains an infinite number of variables
P1, P2, - - ., which complicates the resolution. Therefore, we consider a restriction on de-
grees of internal hyperfaces. Let K be an arbitrary positive integer. In the rest of this
chapter, without additional indication, we will only consider m-constellations whose in-
ternal hyperfaces are all of degree at most mK. The OGF of these constellations is
Fog(t, 01,02, ..., 0k,0,0,...) = Fpglp—otor k>k. We denote this restricted OGF by
Fin gk We notice that F,, , is the projective limit for K — +00 of (F,,, 4 x)x>1. There-
fore, we only need to resolve for F), , x for all K to obtain F), , as projective limit.
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In the following, we fix the value of K, and to simplify the notation, we still denote
by Fy, 4 the OGF of degree-restricted m-constellations of genus g instead of F,, , x. We
denote by p the sequence of variables py,...,px. Since pi, = 0 for k > K, we can rewrite
the operator (2 as

K
Q: F s [27°](0F) where 0 = Z prx ", (4.4)
k=1

We now introduce a change of variables (¢,z) < (z,u), implicitly defined by

t==z (1 + i (mkk— 1)pkzk> ;o r=u(l4+uz)™™. (4.5)

k=1

These equations are closely related to equations satisfied by the family of mobiles related
to m-constellations (c¢f. [34]). The first equation uniquely determines a formal power
series z = z(t) € Q[p][[t]]. Similarly, the second uniquely determines u = u(t,z) €
Q[z, p][[t]]- This change of variable is clearly reversible by ¢ = t(z) and = = x(z,u) as in
Equation ([4.5). We also note that, for any ring B containing p, if H = H (¢, z) € B[z][[t]]
is a formal power series in ¢ with polynomial coefficients in x, then H(t(z),z(z,u)) is a
member of B[u][[#]], and wvice versa. In the rest of this chapter, we will abuse notation by
switching back and forth between a member H (¢, x) of B[x][[¢]] and its image in B[u][[t]]
by the change of variable without further warning. We will use the letter H for both
objects, and rely on the context (including the names of arguments) that should lead to
no ambiguity. We will also omit p in the arguments of a series.
We further introduce another quantity ~:

et i <mk’k_ 1> PR, (4.6)

We notice that t = z(1 4+ ~)1™™.
We are now prepared to resolve the Tutte equations (4.1)) in all generality and (4.3))
for the bipartite case.

4.2 Resolution of the planar case

Although the number of m-constellations with given degree profile of hyperfaces was
already given in [33] using a bijective method, it was never obtained by resolving functional
equations for general m. In the framework of resolution of functional equations, the case
m = 2 was solved in [9], and the case m = 3 in [32]. In [32] it was also proved that the
OGF Fp,0(t,z;1,1,...) without refinement on the degree profile of hyperfaces is algebraic,
i.e. it is a solution of a polynomial equation. In this section, we will briefly show how
to solve Equation for planar m-constellations, using a method that we call the
differential-catalytic method, first devised in [30] for the enumeration of labeled intervals
in the m-Tamari lattice. The reason why we choose to apply this method here is that it
seems to be a powerful method for a large class of functional equations with unlimited
repeated iterations of the same operator, and we want to see how general it is.

The differential-catalytic method is a “guess-and-check” method, i.e., instead of solv-
ing the equation directly, we verify that a given solution candidate indeed satisfies the
equation, and prove that it is the only possible solution. The candidate can come from any
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method, including guessing from numerical result. We thus need the following expression
of Fm,O-
Theorem 4.3. We define the generating function A by
(m—1)k—1
k—1
A=(1 - k o 1 .

e (1o Tt 2w ()1 e

We have F,, o =1+ A.

This expression was already implicit in [33] [34], in the form of the following enumer-
ation formula of m-constellations containing n hyperedges with d; hyperfaces of degree

it e ET

[(m—1)n—f+2]! di! \ k-1

k=1

where f = ), dj is the number of hyperfaces. The detailed computation from this exact
formula to is omitted here due to its volume.

We now comment briefly and vaguely on how the differential-catalytic method works.
It is a guess-and-check method with two stages:

e Transformation: A major difficulty in checking a solution against general m is
the unlimited applications of the operator (Fy,, + 2) in Equation . We thus
introduce a new catalytic variable y into the repeated operator, then differentiate y
to “linearize” the equation into a linear differential equation in y, with an unknown
polynomial function in x7!. We then introduce a “harmonizing operator” , which
turns a series F'(u, z) into a linear combination of F'(U;, z) for some solutions (Uj;);
of a properly chosen equation such that the operator leaves the differential equation
invariant while eliminating the unknown function. The solution of the new equation
is thus a “harmonized” version of the original solution.

e Validity and uniqueness: We first compute the solution of the new equation, and
verify that it coincides with the “harmonized” version of our conjectured expression.
We then prove that, under certain assumptions that hold in our case, the “harmo-
nizing operator” is injective when restricted by our assumptions. We thus conclude
that our conjectured expression is indeed a solution of the original equation.

As we mentioned before, the differential-catalytic method was first devised to solve the
functional equation for labeled intervals in the m-Tamari lattices in [30] (Proposition 5,
with y = 1), which looks very different from our Tutte equation of planar m-constellations:

F(x) = exp (2 v <m<F<x>A>m>’“) ().

k=1
where A is the divided difference operator defined by
S(x) —5(1)

r—1

AS(x) =

However, we still manage to adapt essentially the same resolution method to our case,
which means that this method may be more than a one-shot ad hoc method for one single
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functional equation. Of course, our equation bears some similarities to that in the original
paper [30], such as the presence of catalytic variables and operators of similar flavor (di-
vided differences and §2), and perhaps more importantly, a pattern of repeated application
of the same operator that can be “linearized” by introducing and differentiating a new
catalytic variable. These similarities are part of the reasons why we choose to apply the
differential-catalytic method to our equation.

Now, there are two ways to explain the success of this method to our equation. The
first one is that there is a combinatorial model that interpolates between labeled intervals
in the m-Tamari lattices and planar constellations, and this model is governed by a
functional equation that can be solved by this method. The second one is that this
differential-catalytic method is applicable to a vast domain of functional equations that
are similar to our equation and the equation in [30] in some sense. If the first statement
is true, then we will be able to explain why the enumeration formulae for intervals in the
m-Tamari lattices are so similar to those for planar maps. If the second one is true, then
we have in our hands a powerful generic method to solve very complicated functional
equations, which may allow us to enumerate some other complex combinatorial objects.
Either way is exciting, but we don’t know yet which is correct. To find the correct answer,
we need to find other combinatorial models that give similar functional equations, and
then to try solving them with the differential-catalytic method to see its boundary. A wild
guess is that lattice paths with some sort of decorations may be good candidates of such
combinatorial models, because intervals in the m-Tamari lattices are formed by lattice
paths, and planar constellations are in bijection with a class of trees with decorations (cf.
[33]), which can probably be transformed into lattice paths with some kind of decorations.

In the following, we will apply the differential-catalytic method to prove that Theo-
rem [4L.3]

4.2.1 Transformation

We recall the generating function A in (4.7). We introduce yet another catalytic variable
y to define a series G(t, z,y) € Q[z, y, p][[t]]:

G(t,z,y) = tz(1 + y(A+Q)™(1). (4.8)
We notice that, by taking y = 1, we have
G(t,x,1) =tx(1+ A+ Q)™(1).

Therefore, to prove Theorem (4.3), we only need to verify that the series G defined in
(4.8) satisfies G(t,z,1) = A(x,t). As a first step, we will now show that G(t,z,y) is a
solution of a certain differential equation.

Lemma 4.4. We define N(t,z) = A + 6. For the series G(t,x,y) defined in (&8, we

have
oG

(1+yN) o mNG + xtS. (4.9)

Here, xtS is a polynomial in x=' of degree at most K — 1.

Proof. We start by an algebraic observation. Since both A and € does not depend on v,
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we observe that

8(2(1 +y(A+Q)F = ;yF +(A+QF + y;y((A +Q)F)

=(A+Q)F+(1+y(A+Q))a

—F
dy

We now prove by induction on k that for any integer k > 1, we have

aay(l +y(A+ Q) 1) = k(A + Q)1 +y(A+ Q)1 (1). (4.10)

The base case k = 1 is easily verified. Suppose that (4.10]) is correct for k = a —1 > 1,
we want to prove it for k = a. Using the observation above with F' = (1 + y(A + Q))*" 1,
and the fact that (A4 + Q) commutes with (1 + y(A + Q)), we have

S (L4 g+ ()
iy >u+MA+mv*m+u+ym+9»ia+MA+mf*m
iy

A+
A+ )( +y(A+ Q)" (1) + (a— DA+ QL +y(A+ Q)" (1)
= a(A+Q)(1+y(A+ Q) (1).

By induction, we establish for arbitrary a.

We now define H = ¢t 'z7'G. From (4.8) we see that H is also an element in
Q[z,y,p][[t]]- The differentiation by y of (4.8) with both sides divided by xt gives the
following special case of :

oH 0

2y = 2L YATDM)1) = m(A+ Q)1+ y(A+ )" 1),

Applying (1+y(A+Q)) to both side, with (4.8)) and the observation that (A+€2) commutes
with (1 +y(A + Q)), we have

oH
oy

(1+y(A+ Q) =m(A+Q)H.

We recall that we only consider constellations with degree restriction, using the parameter
K. In this case, from (4.4) we know that the operator (2 is very close to the multiplication
by 6, except that €2 drops the part with negative powers in x. We thus have

(1+y(A+ 9))(21;[ y[z=] (9662[) =m(A+0)H — m[z=°|(0H),

We now define S = S; — Sy, with S} = y[m<0]0%—lj and Sy = m[x=°](0H). The term S
thus contains all the residual with negative power in x from the replacement of €2 by 6.
Multiplying both sides by xt, and we have (4.9).

Since 6 is a polynomial of degree K in ! and both H and %—I; have no negative

powers in z, both S; and S, are polynomials in 27! of degree at most K and divisible

by x~!, thus their sum S too. Therefore, xS is a polynomial in 7! of degree at most
K —1. O
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We would like to get rid of the unknown function S in (4.9)). To this end, we want to
find several series U; = U;(z, u) such that N is stable under the change of variable u — U,
i.e. N(z,U;(z,u)) = N(z,u). We thus need the explicit expression of N given below.

Proposition 4.5. For the series N(t,z) = A+ 0 defined in[{.4 we have

K 0
B K o mk—1
N—uz+(1+uz)kz_:1pkz eZk(uz) ( - >

Proof. By the change of variable (¢,x) < (z,u), we have

K K mk—1 mk — 1
0= Z prer " Z P (14 uz)™ = (1 4 u2) Z Rzt Z (uz)€k< ’ )
k=1

(m—1)k—1 ke
= (14 uz) Zpkzk Z (uz)é< kk~|— gl).

k=1 l=—k

Comparing to (4.7]), we observe that the part of the sum over ¢ with strictly positive
values of ¢ is presented both in # and in A with opposite signs. In N they cancel out and
we have the wanted expression. O

We observe that the power of u in the terms of N varies from —K to 1, thus u N (u)
is a polynomial in u of degree K + 1. Let U be a new variable, and we consider the equa-
tion N(U) = N(u), which is equivalent to u UKXN(U) — UKuX N(u) = 0, a polynomial
equation of degree K + 1, in Q[z, p][u, U]. By Newton-Puiseux Theorem (Theorem [2.4)),
it has K + 1 solutions Uy = u, Uy, ..., Uk, all in Q|z, p]((u*)), where Q[z, p] is the alge-
braic closure of Q[z, p]. Using again the change of variable x = u(1 4+ uz)~™, we define
Xo, X1, ..., Xk that corresponds to each U; by X; = U;(14+U,;z)~™, again in Q[z, p]((u*)).
Although the space in which U; and X live looks highly complicated, this is not a problem,
since we will only use symmetric functions in all U;’s later, whose values are in Q(z, u, p)
(actually also in a much smaller ring Q[p, N|[[z]], see Proposition 4.9|later), or symmetric
functions in all U;’s with i > 0, whose values are in Q(z,u,p) (actually also in a much
smaller ring u'Q|p, z,u™!], see Proposition later).

Proposition 4.6. All U; are distinct.

Proof. Let P(U) = v UK (N(U) — N(u)). Since U = 0 is not a root of P(U), if P(U)
has a multiple root U,, we must have N'(U,) = 0, thus U, is also a multiple root of
N(U) — N(u). We observe that the coefficients of N'(U) do not involve u, therefore U,
does not depend on w. However, N(U,) = N(u) depends on w, which is impossible.
Therefore, P(U) has no multiple root. O

We now introduce the following “harmonizing” operator ~ in Q[u, p,y|[[z]] and in
Alz,x '] for any ring A of characteristic 0:

T F ﬁ ] )

( Z H];él X 1 Xj 1)

It is worth mentioning that the definition of the operator = depends on the X;’s, which

are related to the U;’s that are solutions of the equation N(U) = N(u). We will use the

following property of the operator ~, Wthh has already appeared in [30] with its proof, to

cancel out the unknown function S in . The statement and the proof of this property
are essentially the same as in [30], only slightly adapted to our context.
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Proposition 4.7 (Lemma 13 in [30]). For any ring A of characteristic 0 and P(x) in
Alz™1] of degree at most K —1 in 2™, we have P = 0. Furthermore, we have K =1
and ¥ = (=1)% [, Xx.

Proof. The substitution P(u = U;) = P(X;) is clearly well-defined in Q[z,p]((u*)). By
Proposition [4.6], all the U;’s are distinct, thus all the X;’s are also distinct. Therefore, by
Lagrange interpolation, for any function Q(z) that is a polynomial in 7! of degree at
most K, we have

K —1 X~_1
_ j
) = ;Q(X H XTox T (4.11)
1= VE J
We notice that both sides of the equality are polynomials in z71.
Since P(x) is of degree at most K — 1 in 27!, we have [z~ 5¥]|P(x) = 0. By taking the

coefficient of =% in (4.11)) applied on P(z), we have

B ~ rt-xt K P(X;)
0=[7"]P(x) = KZP Hxlixjfl: X T_x 1~

J#i J i=0 j#i “ ¢ J

Therefore, P =0.
Similarly, by taking Q(z) = 2~ in (4.11)) and taking the coefficient of =%, we have

—~~—

R T B DY | e R ) ) B

VS 2 1=0 j#1 l

Therefore, K = 1.
For the last relation, we take Q(z) = 1 in (4.11]) and then take the constant coefficient,
which leads to

0 oiﬁml_X'_l
l=[z7"]1 =[z7"] ,17],1
=i c X X

K
_anl Xl 1)KIH) X' =3(— KHXk'

1=0 j#1
Therefore, ¥ = (—1)& Hk:l) X O

We can now use Proposition to compute the transformation Gof G , by removing
the unknown residue ztS in (4.9)) using the “harmonizing” operator.

Proposition 4.8. The transformation G of G has the following expressions:

G=(— Kt(ﬂX) 1+ yN)™,  G(t,z,1) = Kt(HX> (I+N)™  (412)

Proof. Since G is in Q[p, y, z][[t]] = Q[p, v, u][[z]], we can apply the operator ~ to both
sides of (4.9). By the definition of all the U;’s, we have N(U;) = N(u) for all U;, which

leads to

K a
(/G 1
(1+yN)—(Ui) - -
i=0 0y [.(X = X5
X 1 K 1
= mNG(U;) — — + » (2t5)]u=v, — —.
;) Hj;ei(Xi - Xj 1) ;) v Hj;éi(Xi - Xj 1)
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Recalling the definition of the operator ~ and the fact that y is independent of all U;, we
have ~
0G ~ ~
(1+yN)— =mNG + «xtS.
0y
By Lemma [4.4, xtS is a_polynomial in 27" of degree at most K — 1. Therefore, by
Proposition we have xtS = 0, which leads to

~

oG N
(1 +yN)5 =mNG. (4.13)

Since G(t,z,0) = tz, by Proposition 1.7, we have

Gy =0) =tr = (—1)KtﬁX,-.

1=0

With this initial condition, it is straight-forward to solve for G , which gives the expression
of G in (4.12)). The expression of G(t, z, 1) is obtained by specifying y = 1 in the expression
of G. m

4.2.2 Validity and uniqueness
We now prove that G(t,z,1) = A(t,x). The proof takes two steps.

e Validity: verify that G(t,z,1) = A(t, z);
e Uniqueness: prove that for any series G, A € xtQ[x, p][[¢]], if G = A, then G = A.

To verify that G (t,z,1) = /Nl(t, x), we only need to compute A and compare the result
with (4.12)).

Proposition 4.9. A polynomial of Uy, ...,Uk of total degree d that is symmetric in all
variables belongs to the domain z~Q|p, N][[z]], where N = N(u,z) = A+0 is as defined
in Lemma[4.4. In particular,

K
Ui = (D)% pgz"t (1 +9) 7
=0

7

where 7 is as defined in (4.6). Furthermore, a symmetric polynomial in all U;’s of degree
d has total valuation in p and N of at least [d/K], i.e., when viewed as power series in
all p and N, each term has at least [d/K| factors of N or py.’s, counted with multiplicity.

Proof. We observe that all coefficients of the polynomial P(U) = UX(N(U) — N(u))
are in Q|p, 2], except for [UX]P(U), which is in Q[p,z, N]. Furthermore, we have
[UKHP(U) = [UYIN(U) = 2(1 + ~). Since v is in zQ[p][[#]], the series 1 + « has
its inverse (1 +v)~! in Q[p][[z]]. Since all symmetric polynomials of total degree d eval-
uated at the set of roots of P(U) are polynomials of total degree at most d in quotients
of the form [U?|P(U)/[UK*T|P(U), they are all in z7¢Q[p, N][[z]]. For the product, we
have X TP

HUz _ (_1>K+1[Um]é<)U) _ (_1)K+1pKZ 1(1 + '7) 1

1=0
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by observing that [U~X|N(U) = px. For the valuation in p of a symmetric polynomial in
all U;’s, we only need to observe that the only term in N (u) that does not contain any py
is uz. Therefore, [U¢]P(U) is of valuation 1 in p for any 0 < d < K — 1. For [UX]P(U),
the only term that does not contain any py is N. Therefore, [U¢|P(U)/[UXT|P(U) of
valuation 1 in p and N for all 0 < d < K. O]

Proposition 4.10. We have G(t,x,1) = A(t, z).
Proof. The following direct computation using Proposition gives the value of A:

$ 0(Xi)
; m(Xl X;l)

] lp]X 7

-3 5 T -
H]¢Z X 1 f Hj?gl X 1 X'fl) K-

J

We now turn to the computation of G(¢, z, 1). According to ([£.12)), we can deduce the value
of G(t,z,1) from that of [T, Xi. We now compute [/, X; via expressions of [ [, U;
and Hfio(l + U;z). Proposition 4.9| gives the value of Hfio U;. To obtain Hfio(l + U;2),
we define a new polynomial Q(V) = P((V — 1)/z) with P(U) = UX(N(U) — N(u)) as
in Proposition which is a polynomial in V' of degree K + 1, whose roots are exactly
Vi =1+ U;z. We have

We can thus read off the following coefficients of Q(V'):

[VIQ(V) = (=) =75 (1 + N(u)),

VEQY) = = (1 (M 1)) — K (14 7),

We thus have

U(l + U;z) = (—1)K“m =14+ 1+ N).

Therefore, by the observation that z = ¢(1 + ~)™!

G(t,x,1) = (—1)5¢ <HU) (]_[ 1~|—Uiz)>_ (1+N)™

=0

)

= ~tpr(1+7)" "2 = —pk.

We thus have G(t,z,1) = A(t, z). O

We will now show that, given the “harmonized” version A of a series A € 2tQ[z, p][[t]] =
uzQ[u, p][[2]] such that [27]A is a polynomial in u of degree at most ¢, we can uniquely
“reconstruct” A from A.
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Our reconstruction is done via a step-by-step “interpolation” between A and A, fol-
lowing the process introduced in [30]. We first define the following series in free variables
X, ..., T that we will use as intermediate steps:

Ap(zo, 21, ..., xp Z — (4.14)

]#Z IZ - CCJ
Here, u; is the unique series in x; and z that satisfies z; = u;(1 +w;2)™™ (the usual change
of variable from z to u). Later z; will be specialized to X;. We have Ag(x) = A(x) and
Ak (Xo,...,Xk) = A(z), which means that the A;’s indeed interpolate between A and

A. We observe the following recurrence on Ay, for k > 1

(35,;_11 — $,;1)Ak(1’0, PN ,l‘k) = Ak—1($07 vy Lp—9, $k_1) — Ak_l(l’o, ey Ll—2, l‘k) (415)
We have the following proposition on the form of Ay.

Proposition 4.11. For variables uy, . ..,uy and xo, ..., xy such that z; = u;(1 + u;z)~™,
given a series A(u) € uzQ[p,u][[z]] such that [z%])A is a polynomial in u of degree at
most d for all d, the series Ay(xq,...,xx) is in Qug, ..., ux, p|[[2]]. Furthermore, all
coefficients of Ay are divisible by uouy - - - up and symmetric in all u;’s, and [2?] Ay has
total degree in all the u;’s at most d + k.

Proof. Using the change of variable = u(1 + uz)™™, we have

1 wiu; C(ug, ujg)
- = I (4.16)
i Ui — Uy

where C(u;,u;) is a member of Q[u;2,u;z][[2]], therefore [2?]C(u;, u;) is a polynomial in
u;, u; of total degree d for all d. For A in uzQ|p, u|[[z]], let A(u) = uzD(u), we have

i C(u u)
A(zo, ..., T =ZZD (u;)u kHH v (4.17)
=0

We thus observe that
By, = Ag(zo, ..., 74) H (i — uy)

is in Q|uo, ..., uk, p][[2]]. Since Ay is symmetric in all u;’s, By is antisymmetric in all
u;’s, and so are its polynomial coefficients. Therefore, each coefficient of Bj(z) must be
a multiple of the Vandermonde polynomial |[,_.(u; — u;), which implies that A is in
Q[uo, - - -, ux][[2]].- Moreover, we can see from that Ay is a multiple of all u;’s.

For the total degree of [2?] Ay, in all the u;’s, we observe from that (z; ' — ;')
is an element of Q(u;, u;)[[2]] with [2%](2; ' —;")~" a rational function in u;, u; of total
degree d + 1 in u;, uj. Therefore, by the definition of Ay, we can see that [z¢] Ay has total
degree d + k in all u;’s as a rational function. O]

We now define the complete homogeneous symmetric polynomial hg(xo, 1, ..., x)) of
degree d in k + 1 variables to be

ha(zo, 1, ..., Tk) = Z Tiy iy +* * Tiy- (4.18)

1<i1 < <ig<k
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For d = 0, hg takes the value 1. Any symmetric polynomial can be written as a polynomial
in hy's with the same set of variables (see, e.g. [I30} Section 7.5]. We should notice that,
although variables of the form py in p have the same notation as another type of symmetric
polynomials called powersum symmetric polynomials, in this section they only serve as
formal variables. The polynomials hy satisfy the following recurrence:

(2ply = @ Dha(eg - ah) = han(ag sty 2 ly) = ha (g aply, 2 ).
Comparing to , it seems a good idea to relate the unknown series (Ax)o<k<k to the
symmetric polynomials (hg)o<a<r -

For a set S = {ip < i3 < -+ < i}} formed by k + 1 integers between 0 and K, we
define
A[S] = Ar(X;

We have Ag[{0}] = A and Ag[{0,1,...,K}] = A. We have the following proposition
about relating Ag[S] to hq[S].

or - X)), halS] = ha(X; ", XY, (4.19)

Proposition 4.12. Let A be a series in uzQ[u,p][[z]] such that [2']A is of degree at
most i in u, and that A € Q[z27'N]|[[p, z]]. We construct Ay[S] using [.14) and (4.19).
For any set S formed by integers from 0 to K, let k + 1 be the size of S, we have

Ag[S] = i ®;hj[5]

with some coefficients ®; in Q[z"'N|[[p, z]] that do not depend on S nor on k, where
N = N(u) is as defined in Lemma with an explicit expression in Proposition .

Proof. We proceed by downward induction for k& from K to 0.
For the base case k = K, the set S can only be {0,1,..., K}, and we have Ag[S] =
A e Q[z7'N][[p, z]] by assumption.

For induction, we fix &, and the induction hypothesis is that Az 1[S"] = 35, | ®;h; 1, 1[S]

j=k+1
with ®; € Q[p, N]((2)) for any S with k + 2 elements. Let S be a set of k integers from

0 to K that does not contain two distinct integers p,q. By (4.15) and (4.18]) we have

(X, = X D An[S U {p, ¢}] = AklS 0 {p}] — AklS U {q}],

(X=X 20 BihialS o il = 25 @5(hilS © {p}] = hii[S v {a}]

Let ©4[T] = Ax[T] — Z]K:kﬂ ®;h;_i[T] be the @) we search for, which seems to depend

on the set T'. Combining the two equalities with the induction hypothesis, we have

Or[S U {p}] = @[S U {q}].

Therefore, ®;[T'] does not depend on T', thus can be denoted simply by ®;. We have the
following equality:

K+1 K
<k+ 1)q>k = > Ai[S] - ’Z D, > hi_x[S].  (4.20)
Sc{0,1,...,.K},#S=k+1 j=k+1 Sc{0,1,....K},#S=k+1

Since A € Q[p,u][[#]], the first sum is a formal power series in z with symmetric
polynomials of all U,’s as coefficients. By Proposition[4.9] a symmetric polynomial of total
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degree d in all U;’s is in 27Q|p, N][[]], and with valuation in p and N at least d/K. By
Proposition m [2%] Aj, has total degree at most i + k and total valuation at least K in
all U;’s. Let P; be the component of degree K < d < i + k in the symmetric polynomial
[2]Ax in all Uy’s. We know from Proposition [4.9| that 2'P; is in 2"~?Q[p, N][[#]], but
of valuation at least d/K in p and N. If this polynomial contributes to a term N%z/p,,,
we must have d < K(a + ¢(u)) and i < d + j, and there are only finitely many such
possibilities of contribution in the first sum. Therefore, the first sum is in Q[[ N, p, z]].
We then observe that the term N%z7p, can be expressed as (z7'N)*z7T%p,,, which means
that the coefficient of z* in the first sum is a polynomial in z~!N of degree at most
k. Therefore, we know that the first sum is in Q[z'N][[p, z]]. For the second sum,
we observe that it is a symmetric polynomial in all X; = U; '(1 + U;z)™. Again by
Proposition [£.9) the second sum is in Q[z*N][[p, z]]. Combining the two sums, we prove

that @, € Q[z~'N][[p, z]]. O
We now investigate the symmetric polynomials in Uy, ..., Uk.
Proposition 4.13. All symmetric polynomials of Uy, . .., Uk without constant term belong

Proof. The series Uy, ..., Uy are all the roots of the following polynomial R(U) in N:
_UR(N(U) = N(u)
B U—u

K L e 1
= UK (z— dipdt ) < Ly > (Z U =72+ ) U’ué‘Z*))
k=1 ¢ %

—k =1 i=——1

K ! mk — 1 ! . ) ! ) )
_ UKZ o Z pk;zk Z ( g ) (Z UK+7,UZ—Z—2 + Z UK-‘,—zuZ—z—l) )
k=1

l=—k i={ 1=0+1

R(U)

We see that R(U) has top coefficient z and all other coefficients in 2u~'Q[p, z, u™].
Therefore, all symmetric polynomials without constant term of the roots Uy, ..., Ux must
be in v~ 'Q[p, z,u™]. O

For W (u) a polynomial in u, we see that W (27!'N) is a Laurent polynomial in u. We
have the following proposition for a reconstruction of W (z7'N) from [u°]W (271 N).

Proposition 4.14. For a polynomial W(z7'N) € Q[z7'N] of 2 'N, we have
W(z'N) = ([z°p]W(z7'N))]

u=z"1N "
Proof. From the expression of N in Proposition , we have [2%p](z7IN)*¥ = u*. The
proposition thus follows by linearity of the operators involved. O

Proposition 4.15. Given the transform A of a series A € uzQ[u, p][[z]] such that [2']A
is of degree at most i in u, there is a unique sequence (P, Pr_1,...,Py) of series in
Q[z"'N][[p, 2]] such that, for all 0 < k < K, we have

ALS] = i ®;h;_i[S].

Here, Ag[S] is as defined by (4.14)) and (4.19).

Furthermore, each ®; can be effectively computed from Aina way that does not depend
on A.
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Proof. The existence and the uniqueness of such an expression is guaranteed by Propo-
sition We now prove that each ®; can be effectively computed, using a downward
induction for £k from K down to 0. The case k = K is already established as the base
case in Proposition by ®x = A. For the induction, we only need to prove that we
can compute @ explicitly from all ®; with ¢ > k.

Since ¢, does not depend on the index set S of variables, we have the following variant

of (1.20):
(ki(l)q)’“: 2 AlS= 2 @ > hik[S]. (4.21)

Sc{1,2,...K},#S=k+1 j=k+1 Sc{1,2,...,.K},#S=k+1

If we consider @, as a series in z and p, its coefficients are all polynomials in z~!N.
Proposition suggests that we can determine @y, itself by computing [u”°]®;. However,
we observe that the sum over Ag[S] is symmetric in all U; with 1 < ¢ < K, and by
Proposition [4.11] and Proposition [4.13] this sum has no positive power in u. By taking

the positive part of (4.21)), we have

(k[il) [ 1 = ~[u™] i ;) 2 hj—x[S]-

j=k+1  Sc{1,2,...K},#S=k+1

The sum of h; 4[S] is a symmetric polynomial in X; ' = U; (1 + U;2)™ for 1 <i < K,
which can be effectively computed. By induction hypothesis, we can effectively compute
all the coefficients of [u=?]®y.

We now recover ®@;, from [u”?]®;. Let ®, be an element in Q[2"'N][[z,p]]. Let i be
a natural number and p a partition such that [2'p,]([u”°])®. # 0 and for any monomial
Zpy with j < i and |\ < |u| we have [27p\]([u®°]®, = 0. It is clear that for any
monomial 2/py with j < i and |\ < |u|, we have [z7p,]®, = 0, since [u']z7'N = 1,
which means that any non-zero term will also lead to a non-zero [27p,]([u”°]®,. We can
then write &, = Pi,u(zle)zipu + ®,, where ®, does not contain the term z"pu. We
have [u0]®, = [u”°|P, ,(27*N)z"p, + [u”°]®,. To compute P ("' N), we first observe
that [u”°]®, does not contain the term z'p,. Therefore, according to Proposition m,
we can recover P; ,(z7'N) from [p | P, (27 *N) = [2'p,][u”"]®., which can be effectively
computed from [u=?]®,. After recovering P, ,(27'N), we can use it to compute [u>°]®, =
[w?0]®, — [u”?] P, (27 N)z'p,, and we can pursuit other terms in @, by studying ®,. We
now apply the previous procedure to [u=°]®, iteratively on all the terms z’p,, in an order
that is increasing by ¢ +¢(u), with ties broken by increasing order in ¢(u), and any further
ties resolved arbitrarily. We first initialize [u®°]®, by [u®°]®;, then after computing the
coefficient of a term, we compute the corresponding [u=°]®, and use it as the [u°®, for
the computation of the coefficient of the next term. In our prescribed order of terms, the
assumption is always valid during the whole iterated procedure, which means that we can
effectively compute all the coefficients of .

As we can see, the previous computation procedure is uniform for all A. Therefore,
the quantity ®; is uniquely determined by all the ®; in an effectively computable way,
thus determined by A. O

Corollary 4.16. For two series F, G in uzQ[u, p[[z]] such that F = G, we have F = G.

Proof. We recall that Xy = x, and we observe that h;(z~') = z77. By taking k& = 0 and
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S = {0} in Proposition 4.12 we have

J

F = Z OF (w1 + uz)m)j , G= Z O (u™'(1+ uz)m)j .

7=0

Furthermore, we have ®f = F = G = ®¢. By Proposition 4.15, we have ®F = ®F for
all k. We thus have F' = G. O

Since A in satisfies A € ztQ|p, z][[t]] = wzQ[p, u][[z]], combining Proposi-
tion and Corollary .16 we know that the expression of Fj,, in Theorem is the
unique series solution of in the restricted case py = 0 for all £ > K. By taking the
projective limit, we know that it is the OGF of planar m-constellations in full generality.

4.3 The higher genus case for bipartite maps

In Chapter 2 we have mentioned that constellations are closely related to other factor-
ization models, such as transposition factorizations counted by classical and monotone
Hurwitz numbers. It is then natural to expect that they share some common proper-
ties. In fact, the generating functions of classical and monotone Hurwitz numbers of a
given genus have been shown to be rational functions in some simple series. The case for
classical Hurwitz numbers was proved by Goulden, Jackson and Vakil in [85] using deep
algebraic results [59]. The case for monotone Hurwitz numbers was done more recently
by Goulden, Guay-Paquet, and Novak in [79]. It is worth remarking that the expressions
in both cases are extremely similar, which invites us to investigate the closely related case
of constellations. In the context of map enumeration, Bender and Canfield obtained in
[8] explicit expressions of OGFs of maps of higher genera without face-degree statistics,
and Gao determined in [73] that the OGFs of maps of higher genera with given set of
face degree are algebraic series with a special form. In this chapter, we will start by the
simplest case of bipartite maps (2-constellations), and prove a rationality result both on
bipartite maps themselves and on the associated rotation systems, which can be seen as
an “unrooted” version of bipartite maps.

Bipartite maps have been considered before in the literature, and we only mention
some recent results here. In [38], Chapuy used bijective methods to obtained a rationality
result, which is weaker than the one proved here, but applies to all m-constellations.
Kazarian and Zograf [103] proved a polynomiality statement for generating functions of
bipartite maps with a fized number of faces using a variant of topological recursion. It
is worth mentioning that these authors deal with dessins d’enfants rather than bipartite
maps, but the two models are equivalent (c¢f. [I07, Chap. 1]). In contrast, our main result
covers the case of arbitrarily many faces, which is more general.

Since we will be talking only about bipartite maps in the rest of this chapter, by a
slight abuse of notation, we will denote by F, o F, 4 the OGF of bipartite maps, ¢.e.
2-constellations. Basically, we are concerned by the resolution of in the case m = 2
for g > 1, where it takes the form

F, = at (QFg +TF+ ), Fg,Fgg,> . (4.22)
0<g’'<yg

To give a rough idea of our proof, we essentially solve (4.22)) using an induction on the
genus ¢g. In the proof, we recycle two ideas of the topological recursion (see [64, 63]),
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but adapt them to an algebraic viewpoint so that we only need to manipulate formal
power series. More precisely, the two crucial steps that are directly inspired from the
topological recursion, and that differ from the kernel method are Proposition [4.25 and
Theorem [4.28] Once these two results are proved, an important part of the work deals then
with making explicit the auxiliary variables that underlie the rationality statements (the
“Greek” variables in Theorem [4.17|below). This is done in Section[t.3.3|and[4.3.4] Finally,
we lift the rationality of bipartite maps (Theorem to that of their rotation systems
(Theorem using an ad hoc proof, partly relying on a bijective insight from [38].
Our resolution is organized as follows. In the rest of this section, we present our
main results (Theorems [4.17| and [4.20) after a short introduction of extra definitions
and notation. In Section we will describe the precise road map to our main result
for enumeration of bipartite maps (Theorem while stating a list of propositions
and lemmas, without proof. The proofs of these propositions and lemmas are given in

Section [4.3.3] and Section [£.3.4] Finally, Section gives the proof of Theorem [4.17] for
rotation systems, and Section collects some final comments.

Our approach to solve (4.22) also relies on the “change of variables” (t,x) < (z,u)
in (4.5) that we used in the planar case. When m = 2, it is specialized to the following

equations:
2k — 1
z=t|1+ 2 4.23
( 2( e ) (4.23)

u = z(1+ zu)? (4.24)

In the following, we will continue to abuse notation in the same way that we did for planar
constellations, such as switching without warning between a series H € B[x]|[[t]] and its
image in B[u][[z]] via the change of variables. We will also continue to use the single letter
H for both objects, relying on the context that should prevent any misunderstanding.

Other than the generating function F, for bipartite maps of genus g, we will also
consider the generating function for rotation systems of bipartite maps, which are defined
in Section m For a bipartite map M of n edges, all of its rotation systems (o., 0., @)
are formed by permutations in S, while the number of black (resp. white) vertices in M
is equal to the number of cycles in o, (resp. 0,), and the number of faces in M is equal
to the number of cycles in ¢. We say that a rotation system of a bipartite map M has
genus ¢ if M itself is of genus g. By Euler’s relation, we have

Uoe) +l(os) +L(p) —n=2—2g

for a rotation system (o., 0., ¢) of genus g formed by permutations in .S,,. We denote by
L, the EGF of such rotation systems of genus g > 1, with ¢ marking the degree n of the
symmetric group S, and p, marking the number of cycles of length £ in ¢. We use EGF
here because rotation systems form a labeled combinatorial class.

Later we will often omit in the notation the dependency of generating functions on the
variables, for example we will write L, for Ly(¢;p1,pe,...) and F, for F,(t,x;p1,p2, ... ).
As a final remark, all fields in the following have characteristic 0, and for a field F, we
denote by F its algebraic closure.
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4.3.1 Main results

To express our main results, we first define the following variables, which are series in z
with coefficients in Q[p]. They are very similar to the “variable”  that we defined in
(4.6). We define the “variables” n and ( as the following formal power series:

def 2]{: — 1 k def 2]{; - 1 k
n= k>1(l€ - 1)( i )pkz , (= ];1 T PRz (4.25)
We define further two infinite families of “variables” (7;);>1 and ({;)i=1 by

def 2k — dof ( )Hlk(k—l)"-(/{—i) 2% — 1
" k>1(k Dk( k )p"zk’ ¢ _,;1(2k—1)(2k—3)---(2k:—2z‘—1)< k )pkzk-
(4.26)

All these variables are called Greek variables, since they are represented by Greek letters.
We recall that, for a partition A = (A1, Ag, ..., A\x), we denote by p, the product Hf;l D, -
Our first main result is the following theorem:

Theorem 4.17 (Main result — unrooted labeled case (g > 2)). For g = 2, the EGF L,
of rotation systems of bipartite maps of genus g is given by a finite sum:

(67 ﬁaCﬂ
L, = b , (4.27)
! a%b P (1=l + Q)P

for rational numbers cgf , where the (finite) sum is taken over integer partitions o, 5 and
non-negative integers a, b, such that |a| + 8] < 3(g—1) and a+b = (o) + ((B) + 29 — 2.

Example 4.18 (unrooted labeled generating function for genus 2).

;o L1 m(185m—58p) 1 20— 168 + 415m  53/15360
7120 23040 (1—p)" 46080 (1—n) (1—n)?
7T oS 1/512 m/1536 3 1 3 G

CWO(1-n)° (I-m(I+¢)  (1-n)(1+C) 1024(1+g)2+8192(1+@3‘

Here, for instance, the term — 28780 (177177)5 corresponds to a = (1,1,1), B =€, a = 5 and
(1,1,1),e 7
b = 0, with the coefficient c; = —za5-

The case of genus 1 will be stated separately later since it involves logarithms.

Theorem 4.19 (Unrooted labeled case for genus 1). The EGF Ly of rotation systems
of bipartite maps on the torus is given by the following expression, with the notation of

:

1 1
L 2410’5"51 n T80T
We invite the reader to compare Theorem with [85] Theorem 3.2], [79, Theo-
rem 1.4] (see also [79, Section 1.5]) and [63, Chapter 3] to see the strong similarities of
these results.
In order to establish Theorem [4.17, we will first prove the following rationality result
for the OGF Fj, of bipartite maps.
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Theorem 4.20 (Main result — rooted case). For g = 1, the OGF F, of rooted bipartite
maps of genus g is equal to

o a3 dyy. . dey
F, = 2 LROT_ 4 AGT , (4.28)
g ; a,ﬁ,t;),bZO (IT=m)*(1+¢° \ (1 —uz)c (1+uz)e

a7b7C7

implies b = ((8), (2+1)g =[] + |a| + 18] and a + b = l(a) + £(B) + 29 — 1 for the two
signs, and the sum above is finite.

for d*P + € Q, with the same notation as in Theorem . Furthermore, d;‘;ﬁci # 0
l

Example 4.21 (rooted generating function for genus 1).

g (1=2m—1)/16 4L+ C)m + 30" —60(1—n) +3 1/2
b (w2l p)? 96(1 — uz)(1 + ()(1 —n)? (1 —uz)*(1—n)
5/4 1/32 (21 — 2y — 21)/24

T w)iion Gru)1+0  G-upa_npe - 2

Here, for instance, the term
with d§, , = —5/4.

—% corresponds toa = =€, a=1,b=0, ¢ = 4,

Remark 4.1. Note that the Greek variables 7, ¢, 7;, (; are all infinite linear combinations
of the pjz* with explicit coefficients. Moreover, for fixed ¢ the sums , depend
only of finitely many Greek variables, see e.g. Example [{.18 Note also that if only
finitely many p;’s are non-zero, then all the Greek letters are polynomials in z and p. For
example, if p; = 1,_9, i.e. if we enumerate bipartite quadrangulations, all Greek variables
are linear in z. In particular, and since bipartite quadrangulations are in bijection with
general rooted maps (see e.g. [128]), the rationality results of [§] are a (very) special case
of our results.

We conclude this section by recalling the notation in (4.6) in the context of bipartite
maps (m = 2). In addition to the Greek variables n, (, (7;)i>1, ((;)i>1 already defined, we
recall the following expression of v in the bipartite case m = 2:

2%k — 1
~y o ( " )pkzk. (4.30)
k=1

Note that the change of variables (4.23) relating z to t is given by z = t(1 + 7).

4.3.2 Proof strategy of Theorem [4.20

The strategy we will use to prove Theorem is to solve recursively on the genus
g. Note that, for g > 1, and assuming that all the series F}, ['F}, are known for h < g, the
Tutte equation is linear in the unknown series F,(x). More precisely it is a linear
equation for the unknown series Fj involving one catalytic variable (the variable z), see
e.g. [28]. Therefore, it is tempting to solve this equation by means of the kernel method,
or a variant of it.

In the following, we will set a threshold K for the degree of faces in bipartite maps that
we count, as we did for planar constellations in Section [4.2] Namely, we will only consider
bipartite maps whose faces are of degree at most K, which translates to the specialization
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Fy(t,x;p1,pa, - .., PK,0,0...) in the OGF F,, and we will also abuse the notation to denote
this specialization by Fj. After resolution of the equation for this restricted version, by
taking a projective limit, we can recover the OGF F} in full generality. Therefore, we can
focus on the restricted version from now on. The same applies to the EGF' L, of rotation
systems.

But there is a catch: the substitution of all p;’s by 0 does not commute with I'
defined in (4.2)). For instance, I'(p;)|p—o = iz’, but I' (p;|p=0) = I'(0) = 0. Therefore,

(CFlo # T (Filypo)-

The reason is that I" taps into faces of every possible degree and turns the selected face to
a part of the outer face. Even when we restrict ourselves to bipartite maps with restricted
degree of faces, some maps can be the result of joining the outer face with an internal face
with arbitrarily large degree via I'. Therefore, to count these bipartite maps correctly,
we have to use the version of F, with all p;, in I'F;, and then specialize to p; = 0 for all
k>K.

There is another important notion in our induction. For K a field containing z, a
rational function A(u) € K(u) of u is called wuz-symmetric if A(z7?u™1) = A(u), and
uz-antisymmetric if A(z"2u~') = —A(u). These notions can be seen as symmetries with
respect to the involutive transformation uz <> u~'z~!. We now give a more precise

Z .
description of our induction. The base case g = 1 of the induction in (4.29) will be proved
separately without induction hypothesis.

Global Induction Hypothesis: For genus g > 2, we assume that Theorem [4.20]
holds for genus ¢’ with 1 < ¢’ < g. In particular, F, is a rational function of u. We
further assume that Fj, is uz-antisymmetric.

We now start examining the induction step. We recall that we use the degree restriction
K here, that is, we will solve for F,, with p, = 0 for any £ > K. Our first observation is
the following proposition.

Proposition 4.22 (Kernel form of the Tutte equation). Equation (4.22)) can be rewritten

as
YF,=atTFyy +at Y F,F, —atS, (4.31)
g1t+g2=g
91792>0
where
% Pk
Y €1 —2txF, —tah, with 0% —
=1

and S = S(t,z;p) is an element of Q[p][[t]][x] of degree at most K — 1 in = without
constant term, which depends on Fy among other series.

Proof. Consider the Tutte equation (4.22)). With the degree restriction, by (4.4) we have
OF, = [#"]F,0.
Now let S be the negative part of F,0, i.e:

S = [2=1F,0 = F,0 — [27°]F,0.
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Since 6 is in Q[p, 2] and of degree K in 27!, and since F, has no constant term in x, S

is also in Q[p, 2~ '] and has degree at most K — 1 in 2~ !. Since §F, = QF, + S, we can
now rewrite the equation as

Fy = otbF, — otS + atF\0 +at Y. Fy F,, + 20t Ry F,.
g1+9g2=g
91792>0

We now move all terms involving Fj to the left and factor out F; to obtain (4.31)). [

Rational structure of F, and the topological recursion

In this section we describe in detail the structure of the “kernel” Y and of the generating
function Fy, in order to establish our main recurrence equation (Theorem . We leave
the proofs of the most technical statements to Section [4.3.3 and Section [£.3.4]

In order to analyze the Tutte equation in its kernel form [£.31] it is natural to study
the properties of the kernel Y. In the following, we will consider polynomials in A[z][u] or
A[[2]][u] where A = Q(p). Note that any such polynomial, viewed as a polynomial in u,
is split over P < A((z*)) the Puiseux series field of variable z, defined as in the beginning
of Section (see also Table [2.1)).

An element ug € P is large if it starts with a strictly negative power in z, and is small
if it starts with a strictly positive power in z. The following result is a consequence of
Theorem and some computations that we delay to Section [4.3.4] As explained in
Section [4.3] it is implicit in the following that generating functions are considered under
the change of variables (¢,z) < (z,u):

Proposition 4.23 (Rational structure of the kernel). Y is an element of Q(z,u;p) of

the form
N(u)(1 —uz)

uK=1(1 +9)(1 + uz)’
where N(u) € Alz][u] is a polynomial of degree 2(K — 1) in u.
Proof. See Section [4.3.4] O

Caveat: The polynomial N(u) here in this section is different from that in Proposi-
tion in the previous section on enumeration of planar constellations.

Y =

Proposition 4.24 (Structure of zeros of the kernel).
(1) Y is uz-antisymmetric.

(2) Among the 2(K — 1) zeros of N(u) in P, (K — 1) are small and (K — 1) are large.

Moreover, large and small zeros are permuted by the transformation u <> 2z 2u~!.

Proof. See Section [4.3.4] O

Before solving , we still need to examine more closely the structure of Fy. In the
following, each rational function R(u) € B(u) for some field B is implicitly considered as
an element of B(u). In particular, its denominator is split, and its roots are called poles,
which are elements of B. Moreover, R(u) has a partial fraction expansion with coefficients
in B, and the residue of R(u) at a pole u, € B is defined as the coefficient of (u — u,) !
in this expansion, which is an element in B.

The following result is perhaps the most crucial conceptual step that we borrowed
from the topological recursion method (c¢f. [63, Chapter 3]) in our proof of Theorem [4.20]
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Proposition 4.25 (Structure and poles of Fy). For g =1 and for g = 2 while assuming
the Global Induction Hypothesis, F, is an element of A[[z]](u) that is uz-antisymmetric.
Its poles, which are elements of P, are contained in {z~*, —z"'}. Moreover, F, has negative
degree in u, i.e. when written as a rational fraction in u, the degree of its numerator in
u s strictly smaller than that of its denominator.

The proof of Proposition [4.25| uses the two following lemmas.

Lemma 4.26. If A is an element of Q(u, z,7v,m,¢, (0:)i>1, ((i)i=1) with negative degree
in u whose poles in u are among {£z"'}, then so is TA(u). Moreover, if A(u) is uz-
antisymmetric, then U'A(x) is uz-symmetric.

Proof. See Section [4.3.3] O

Lemma 4.27. Let A(u) € B[[z]](u) n Blu]((2)) = B(u)((2)) be a rational function in u
whose coefficients are formal power series in z over some field B, and that as a Laurent
series in z has coefficients that are polynomials in w. Then A(u), seen as a rational
function in u, has no small pole.

Proof. By the Newton-Puiseux theorem, we can write A(u) = #&(u) as an irreducible
fraction with P(u) € B((z*))[u], @i(u) = [[;(1 — uu;) and Qo(u) = [];(u — v;), where
the u;, v; are small Puiseux series over an algebraic closure B of B and v; without con-
stant term. Since P(u)/Q2(u) = cA(u)@Q:(u), and since B[u]((z*)) is a ring, we see that
P(u)/Qo(u) € B[u]((z*)) . But since 1/Qs(u) = Hj Zk>0 u*kkv;-C is in Blu~']((2*)), this
is impossible unless @y divides P in B((z*))[u], which concludes the proof. O

We can now give the proof of Proposition [4.25}

Proof of Proposition[4.25. We recall that in the Global Induction Hypothesis, for a fixed
genus g = 2, Theorem holds for genus ¢’ with 1 < ¢’ < ¢, which means that
Lemma applies to F;. Furthermore, the Global Induction Hypothesis also state that
F, is uz-antisymmetric.

We first claim that the right-hand side of is uz-symmetric. In the case g > 2 this
follows from the Global Induction Hypothesis, since each term F, F,, is uz-symmetric as a
product of two uz-antisymmetric factors, the term I'F,_; is uz-symmetric by Lemma m,
and S, as any rational fraction in z, is uz-symmetric since z(u) = m is uz-symmetric.

In the case g = 1, the right-hand side of is equal to ztI'Fyy + S, it thus suffices

to see that I'F{) is uz-symmetric. Now, the series I'Fj is given by

u?z?

I'fy = —.
T (1 —u2)!

(4.32)

This expression can be found in [63, Chapter 3, cylindric amplitude] by interpreting I'Fy
as the OGF of bipartite maps with an extra root on a special face other than the outer
face, marked by z* instead of p,. We should note that what [63] calls bipartite maps are
in fact maps with all faces of even degree, and as mentioned in Chapter 3, they do not
coincide with bipartite maps in general, except in genus 0. Therefore, we can still use this
result here. It can also be obtained from direct computations from the explicit expression
of F, o given in Theorem while taking m = 2, and it is also easily derived from [51]
Theorem 1] (in the case p = r = 2, with the notation of this reference). Since is
clearly uz-symmetric, the claim is proved in all cases.
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Hence, by Proposition F, is uz-antisymmetric, being the quotient of the wuz-
symmetric right-hand side of by Y. Now, by the Global Induction Hypothesis and
Lemma m (or by a direct check on (4.32)) in the case g = 1), the right-hand side of
is in A[[2]](u), and its poles are contained in {+2z7' 0}. Hence, by solving
for F, and by using Proposition [£.23] we deduce that F, belongs to A[[2]](u) and that its
only possible poles are +£27% 0 and the zeros of N(u).

Now, viewed as a series in z, F, is an element of Afu][[z]]. Indeed, in the variables
(t,x), F, belongs to Q[p][z][[t]] for clear combinatorial reasons, and as explained after
(4.5), the change of variables (¢,x) < (z,u) preserves the polynomiality of coefficients.
Therefore, by Lemma @, F, has no small poles. This excludes 0 and all small zeros
of N(u). Since F, is uz-antisymmetric and since by Proposition the transformation
u < z ?u~! exchanges small and large zeros of N(u), this also implies that F, has no
pole at the large zeros of N(u). By Proposition all zeros of N(u) are excluded.

The last thing to do is to examine the degree of F}; in u. We know that S is a polynomial
in 27! of degree at most K —1, thus has degree at most K —1 in w. Therefore, by induction
and Lemma m (or by a direct check on in the case g = 1) the degree in u of the
right-hand side of is at most K — 2. Since the degree of Y in w is K — 1, the degree

of Fy, in w is at most —1. O

Remark 4.2. Analogues of the previous proposition, stated in similar contexts [63, Chap.
3] play a crucial role in Eynard’s “topological recursion” framework.

To understand the importance of Proposition [£.25], let us make a historical comparison.
As explained in Example 2 of Section , the “traditional” way of solving using
the kernel method would be to substitute in (4.31)) all the small roots of N(u), and use
the (K — 1) equations thus obtained to eliminate the “unknown” polynomial S. This
approach was historically the first one to be considered, see e.g. [73]. It leads to much
weaker rationality statements than the kind of methods we use here, since the cancellations
that appear between those (K — 1) equations are formidable and very hard to track. As
we will see, Proposition circumvents this problem by showing that we just need to
study at the two points u = 27! rather than at the (K — 1) small roots of N.

With Proposition [4.25 we can now apply one of the ideas of the topological recursion
(cf. |63, Chapter 3]), namely that the whole series Fj, can be recovered from the expansion
of at the critical points u = +27!. In what follows, we will only consider rational
functions of the variable u over A[[z]]. In particular, we will use the notation F,(u) to
emphasize the fact that F}, is an element of A[[z]](u) = Q(p)[[#]](w), or even Q[p][[z]](w).
We denote by P(u) = 1;3; the prefactor that we will use later in the resolution of (4.31]).
By Proposition the rational function P(u)F,(u) has only finite poles at u = +z7*
and has negative degree in u, which denies any pole at the infinity co. Therefore, if g is

some new indeterminate, we can write P(ug)F(up) as the sum of two residues:

1

Ug — U

P(ug)F(up) = Resy—q,1 P(u)F(u). (4.33)

This equality only relies on the algebraic fact that the sum of the residues of a rational
function at all poles (including o) is equal to zero, no complex analysis is required. Now,

multiplying (4.31]) by P(u), we have:

wtP(u)Hy(u)  atP(u)S(x)
Y (u) Y(u)
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where
Hy(w) = TFa(u) + Y () Py (). (4.34)

g1+g92=g
91,92 >0

Now observe that the second term in the right-hand side has no pole at u = +z71: indeed
the factor (1—wuz) in Y (u) is canceled out by the prefactor P(u), and xS(z) is a polynomial
in x7! = w7 (1 + uz)% Returning to (4.33]) we have proved the following theorem.

Theorem 4.28 (Topological recursion for bipartite maps). For g = 2, the series Fy(uo)
can be expressed as follows:

_ P(u) xt
Fy(ug) = P(UO)Resu:i,IUO_W(W ng_l(u)+g1;_g Fy (u)Fy(u) | (4.35)

Note that the right-hand side of (4.35]) involves only series F}, for h < g and the series
I'F,_1, which are covered by the induction hypothesis. This contrasts with (4.31)), where
the term S(z) involves small coefficients of F}, expanded in z, which are unknown.

Proof of Theorem [4.20.

In order to compute F(uy) from Theorem it suffices to compute the expansion
of the rational fraction H,(u)Y (u)™* at u = +z7', with H,(u) as defined in (4.34).
The expansion of the product Fy, (u)Fy,(u) is well covered by the induction hypothesis,
so the focus will be the structure of the term I'F,_;(u) and the derivatives of Y (u) at
u = +z~1. The first aspect requires a closer look at the action of the operator I' on Greek
variables, and the second requires specific computation. Note also that, in order to close
the induction step, we will need to take the projective limit K — co. Therefore, we need
to prove not only that the derivatives of Hy(u)Y (u)~! at u = +27! are rational functions
in the Greek variables, but also that these functions do not depend on K.

In the rest of this section, we apply this program and prove Theorem [4.20, using
two intermediate results (Proposition and below), whose proofs are delayed to
Section [4.3.4l and 14.3.3l

The derivatives of Y'(u) at the critical points u = +2~' can be computed explicitly
with some algebraic work. It is there that the Greek variables appear. In Section {4.3.4
we will prove the following proposition.

1

Proposition 4.29. The rational function xtP(u)Y (u)™' in u has the following formal
expansions at u = +zL:

wtP(u) 1 . e )
wtPu) 1 s »
Y(U) - (1 + g)(]- + UZ)2 + Z Ca,a(l + C)K(Oé)-i-l (]- + UZ) ,

a,a=2|al

where ¢! . c” —are computable rational numbers independent of K.

a,a) Ca,a

Note that the proposition above is just a formal way of collecting all the derivatives
of #tP(u)Y (u)~! at u = £271, we are not interested in convergence at all here.

The next result, to be proved in Section details the action of the operator I' on
Greek variables and uz.
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Proposition 4.30. The operator I is a derivation on Q[py, ps, ... |[z][[t]], i.e. it satisfies
['(AB) = AI'B + BT'A. Moreover, its action on Greek variables is given by the following
ETPTeSSLONS:

572 (s —1)2

tue = A4(1-n)
I'¢ = 8(51_77) ((zz + 1) + Z Y+ A1) (1 + ()) ,
+ ;(s_l —5) <(2@ +1)(s* = 1) + 4 (1)1 (s* = 1) + (—1)%’) :
st—s (s'=s)(1+¢) 1, 5
I¢=— g2t S = )52 +§(s — s —2+2s),
Py = e )+ 3 )

s —s 1 d\"*!
I'n; = 7)8277141 t 5 ((3 - S_I)ds) (s70 =357 +2),

1 —uz
, which is equal to the prefactor P(u) by coincidence. In the expression

where s =
+ uz

of I'n;, the differential operator % is simply a differentiation by s of a Laurent polynomial
m s.

Before proceeding to the proof of Theorem [£.20, we first introduce two notions of
degrees that will be very helpful in our proof: the Greek degree and the pole degree.

Let G be the sub-ring of Q(n, ¢, (1:)i>1, ((;)i=1, uz) formed by polynomials in the vari-
ables (1 —n)™Y (1 4+ )7L M)is1, (G)is1, (1 —uz)™t, (1 +uz)~t. Equivalently, we have
def 1 1
A TET
other ring G+ by adding (1 + () as a variable in G, or simply written as G, = G[(1+ ()].
It is clear that s is algebraically independent from all Greek variables, since it depends on
u, thus on x, and all Greek variables do not depend on x. We now prove that the Greek

variables are algebraically independent.

()1, (G)is1,8, 51|, where s = (1 —u2)(1 +uz)~. We define an-

Proposition 4.31. For a natural number d > 0, the Greek variablesn,ny,...,04,(, (1, ..., (g
are algebraically independent.

Proof. The monomials py22, p323 . .. pags322@+3 are clearly algebraically independent, since

z depends on ¢, which is independent of all the p;’s. On the other hand, all the Greek
variables are of the form 3}, _, R(k)(*" ")px2¥, for different rational fractions R(k). We
thus only need to prove that the Jacobian matrix M of the chosen Greek variables

N, M2, C, Cy - - ., (g Testricted to variables paz?, psz3 ... pogy3z?d™3 is of full rank (cf.
[58]). According to the definition of Greek variables in (4.25) and (4.26)), we have

M = (—2)Ud+d)/2 <2ﬁ2(k —1) (2’“ k_ 1)) M;,

k=1
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with the matrix M; defined as

11 1
2 3 k 2d + 3
|2t 3d e (2d + 3)¢
A4i - 1 1
k 2d+3
2/3 1/5 ey e GdT)(AdT3)
0 k(k—2)(k—3)---(k—d) (2d-+3)(2d+1)(2d)---(d+3)
| (2k—1)(2k—3)--(2k—2d—1) (4d+5)(4d+3)—(2d+5) |
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Here, we extracted the common binomial factors (k— 1) (2’{; 1) from each column, and the

common factors (—2)""! from rows corresponding to all ¢; (the last d rows). We now only
need to prove that det(M;) # 0. To simplify the notation, we define

R(k,i) < (2k — 1)(2k — 3) - - (2k — 20 + 1).

We observe that R(k,i) is a polynomial in k of degree i. Furthermore, we have R(k, j) =
R(k,i)R(k —1i,j —1).

We will first sort out the last d + 1 rows. We denote by 7, ..
the last d rows. We now introduce another set of row vectors Z7, ZJ, ..

., Zy the row vectors of
., Z}, defined as

k
(2k —1)(2k — 3) - (2k — 2i — 1)

Z! € [kR(k,i + 1) ich1<2dso =

1<k—1<2d+2

We now prove by induction on ¢ that 7y, ..., Z; spans the same vector space as 77, ..., Z..
The base case is clear since Z; = Z;. We now perform the induction step. Suppose
that Span(Zy,...,Z;) = Span(Zy,...,Z!), we now want to study Span(Zi, ..., Z;, Zi+1),
which is equal to Span(Z;,...,Z!, Z;11). We now only need to prove that Z;,; is in
Span(Z1,...,Z!, Z!. ) but not Span(Zi, ..., Z!), with a non-zero coefficient for Z/, ,. We
observe that, under the common denominator R(k,i+1) = (2k—1)(2k—3) - - - (2k—2i—3),
the denominator of the k™ term of Z! for 1 < a < i+ 1 is a polynomial in kQ[k] of degree
i+2—ain k, with coefficients independent of k. Therefore, the Z! for 1 < a < i+ 1 spans
the same space as ([k°/R(k,7 4+ 1)]1<k—1<2d+2)1<c<it+1, Which also contains Z;,4. Since k
takes 2d + 2 values from 2 to 2d + 3, which is larger than the degree of numerators of
all Z!, we can reason about linear combinations of all the Z! in polynomials in k instead
of the 2d + 2 different specializations. Under the common denominator R(k,i + 1), the
numerator of the k™ term of Z, for 1 < a < i are all divisible by (2k — 2i — 3), while the
numerator of the k' term of Z;,, is k(k —2)--- (k — d), not divisible by (2k — 2i — 3).
Therefore, Z; ;1 cannot be in Span(Z1, ..., Z!). We thus finish the induction step.

Since Zy,...,Z; spans the same vector space as Z7,...,Z!, we can replace the last
d rows by Zi,...,Z) without changing the rank of the matrix M;. Similarly, using
ﬁ +1 = 25:, we can replace the (d + 2)™ row (corresponding to ¢) by the row

vector [T’il]lgk_lggd_;'_Q, which is a linear combination of the first row and the (d + 2)*



104

row of M;. We can thus define a new matrix Ms by

1 1
2 3
M def 2d 3d
2 =
2/3 3/5
2/3 1/5
2
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1

k

kd
kR(k, 1)~
kR(k,2)!

kR(k,d+ 1)~

1
2d + 3

(2d + 3)¢
(2d + 3)R(2d + 3,1)~!
(2d + 3)R(2d + 3,2)!

(2d + 3)R(2d + 3,d + 1)~!

We know that M is of full rank if and only if Ms is of full rank.
1)™ column of My by R(k,d + 1) for all k from 2 to 2d + 3.
By the relation R(k,j) = R(k,i)R(k —1i,j — 1), we have

We now multiply the (k —

2d+3
[ ] Rk.d+1)M, =

k=2
R(2,d+1)
2R(2,d + 1)

29R(2,d + 1)
2R(1,d)

2R(0,d — 1)

2

R(k,d +1)
kR(k,d+ 1)

kKR(k,d+1)
kR(k —1,d)

kR(k—2,d—1)

kR(k —d—1,0)

R(2d+3,d+ 1)
(2d+ 3)R(2d + 3,d + 1)

(2d + 3)4R(2d + 3,d + 1)
(2d + 3)R(2d + 2, d)

(2d+3)R(2d + 1,d — 1)

(2d + 3)R(d + 2,0)

Since R(k, 1) is a polynomial in k of degree i, by looking at the degree of terms in each row,
we know that all row vectors except the first are linearly independent, and is triangular
with respect to the basis ([k']1<x_1<2d+2)1<i<24+1 Which spans the same vector space. Since
R(k,d + 1) has a constant term, the first row is also linearly independent of the other
rows. Therefore, My is of full rank, which implies that the selected Greek variables are

linearly independent.

O

The Greek degree, the pole degrees and the (-degree are defined for elements of G as
generalized degrees, where each variable is assigned a weight. The degree of a monomial
is thus the weighted sum of the powers of each variable, and the degree of a polynomial
is the highest degree of its monomials. We take the convention that 0 is of degree —oo for

all the notions of degree we are going to define.

The Greek degree, denoted by deg. , depends only on Greek variables, i.e. degv(s) =0,

and is defined by:

deg, (s) = 0, deg,(1—n)™") = deg, (1 +Q)7") = ~1, deg, () = deg, (¢;) = Lfori > 1.
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As examples, we have deg, (%) =1, and deg, (%) = —1.

The pole degrees are defined for each of the two poles u = +1/z, and are denoted by
deg, and deg_. They depend on both Greek variables and (1 + uz) as follows:

deg+(3_1) = 1,deg+((1 - 77)_1) = deg+((1 + C>_1) = O7deg+(77i) = deg+(Ci) = 2ifori > 1,

deg_(s) = 1,deg, (1 —n)"") = deg, ((1+¢)7") = 0,deg_(n;) = deg_(¢;) = 2ifori > 1

As examples, we have deg,(s) = —1, deg_(s7') = —1, deg, (%) = 3, and
3s2(5n3+Tn2C2) | _
dog_ (PTEBESY) =6

The (-degree, denoted by deg,, only depends on (14 ¢)~" and ¢; for i > 1 as follows:

deg (1 —¢)7") = —1,deg(¢;) = 1fori>1
deg,(s) = deg.(s™") = deg (1 —n)~") = degc(m:) = 0 fori > 1

Since the variable s and the Greek variables are algebraically independent according
to Proposition [4.31] the Greek degree, the pole degrees and the (-degree are well-defined.
By allowing negative powers of (1 + ()™, we can extend the definition of these degrees to
G. We have the following proposition.

Proposition 4.32. If T is a monomial in (1+¢)7%, (1—-n)7Y, s, s, n; and ¢ fori > 1
then I'T is in G4 and is homogeneous in Greek degree. Furthermore,

deg. (I'T) = deg (T) — 1,
deg, (I'T) < deg, (T) + 5, deg_(I'T") < deg_(T) + 1,
deg (I'T") = deg(T).

Moreover, if T satisfies deg.(T') <0, then I'T is in G.

Proof. Since I' is a weighted sum of partial differentiations, we have the following expres-
sion for I'T"
I'T = (Ts)

T + (T'n) aT+Z (Tn;) i T+Z IN®) (4.36)

C i>1 i>1 agz
With Proposition 4.30f we verify that I'T" € G,. For the rest of the proposition, it
suffices to analyze each term for each type of degree using expressions in Proposition [4.30]
We start by the Greek degree. According to Proposition 4.30| and the fact that s =
(1 —uz)/(1+ uz), we have

i
ST IO

s72(s7t — 5)?

8(1—n)
We can thus compute the Greek degree of each term, supposing that they are not zero.
We have

I's=—

oT
deg. (I's) = -1, deg, (63) = deg, (T);

deg, (I'n) = deg (I'¢) = deg,(I'y;) = deg,(I'¢;) =0 for i > 1

oT oT oT oT _
ter, (G5 ) =dee, () = (57) = e, () = demsmy =1 o i1,
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Therefore, each non-zero term in (4.36) has Greek degree deg, (T') — 1.
We proceed similarly to pole degrees deg, and deg_. For deg, , supposing that none
of the partial differentiations is zero, we have

T
deg,(I's) =4, deg, (aas) =deg, (T) + 1,

or
deg,(I'm) =5, deg, (an) = deg, (T);

or
deg, (I'C) =3, deg, <) = deg, (T);

, oT : .
deg, (I'm;) = 2i+ 5, deg, (8) = deg, (T") — 2i for i>1;
) = deg (1) — 2¢ for i > 1.

Therefore, each non-zero term 7" in (4.36]) has deg, (7") < deg, (T') + 5.
For deg_, again by supposing that none of the partial differentiations is zero, we have

deg_(I's) =0, deg_ <8T

aS) — deg (T) 1

deg_(T) = —1, deg. (ZT) — deg_(T);
n

deg (T'¢) =1, deg_ (aa?) =deg_(T);

oT
deg (I'm;) = 2i+1, deg_ (977') =deg (T) — 2i for i > 1;
. oT _ _
deg (I'¢;) =20+ 1, deg_ (6{) =deg (T) —2i for i > 1.

Therefore, each non-zero term 7" in (4.36)) has deg_(7") < deg_(T) + 1.
Finally we deal with the (-degree. Again, by supposing that the partial differentiations
are all non-zero, we have

oT

deg.(I's) =0, deg, (83) = deg (T);
oT

dog(0n) = 0, dog (5) = degy (1)

n
orT
deg (I'C) =1, deg, (

deg (I'm;) =0, deg,

deg.(I'¢;) =1, deg, <8T> = deg (T) — 1 for i > 1.
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Therefore, for each non-zero term in (4.36)) has deg,(1") = deg_(T).
For the last statement, we clearly have deg,(I'T") = deg.(T") < 0. We then observe
that a monomial in G, that has strictly positive powers in (1 + ¢) must have strictly

positive (-degree, which cannot occur in I'T" of negative (-degree. Therefore, I'T" is in
G. O

We can now prove our first main result (up to the proofs that have been omitted in
what precedes, which will be addressed in the next sections).

Proof of Theorem [{.20. We prove the theorem by induction on the genus g > 1, with
the Global Induction Hypothesis plus the hypothesis about various degrees of F,;, namely
deg (Fy) =1 —2g, deg, (Fy) < 6g — 1, deg_(Fy) <29 — 1 and deg.(Fy) < 0.

We consider in Theorem m Proposition implies that all terms in the
expansion of ztP(u)/Y (u) at u = +27! are rational fractions in the Greek variables, with
denominator of the form (1 —n)?(1 + ¢)® for a,b = 0. Moreover, the expressions of these
terms in Greek variables do not depend on K, or we can say that all the dependence on
K lies in Greek variables.

When ¢g > 2, from the induction hypothesis and the case of non-positive (-degree in
Proposition , the quantity H, defined in is a rational fraction in u, z and the
Greek variables, with denominator of the form (1 — 1)%(1 + ¢)°(1 + uz)¢ for a,b,c = 0.
This rational function does not depend on K (when written in the Greek variables). The
same is true for g = 1 using the explicit expression of T'Fy given by (4.32).

Therefore, the evaluation of each residue in is a rational function of Greek
variables, independent of K, and with denominator of the form (1 —n)*(1+ ¢)°(1 £ u2)¢,
with a,b,c > 0.

We now prove the degree conditions for Fj using the induction hypothesis for degrees.

We first look at H,, in the case g > 2. It has two parts: the sum part, which is
Z?,_:ll FyF, 4, and the operator part, which is I'F,_;. We analyze the degree for both
parts. For the sum part, it is easy to see that any term 7" in the sum is homogeneous of
Greek degree deg, (1) = 2 — 2g, the pole degrees satisfy deg, (1) < 6g —2 and deg_(T') <
2g—2, and the (-degree is at most 0. For the operator part, it results from Proposition [4.32]
that I'Fj,_; is a sum of terms 7" homogeneous of Greek degree 2 —2¢, and deg, (I'F,_;) <
69 — 2, deg_(I'Fy_1) < 29 — 2, and lastly deg,(I'F,_;) < 0. Therefore, the result from the
sum part and the operator part agrees, and H, thus satisfies the same conditions as its
two parts. For g = 1, the same bound holds, as one can check from the explicit expression
of Hy = xtI'Fy following from (4.32)).

We now observe from Proposition that all terms appearing in the expansion of
xtP/Y at u = 27! are homogeneous of Greek degree —1. Therefore, all the terms in
the expansion of 2tPH,/Y at u = +z7! have Greek degree deg, (H,) + deg, (ztP/Y) =
1 — 2g. For the pole degrees, we notice from Proposition that deg, (ztP/Y) <0
and deg_(ztP/Y) < 2. Similar to the Greek degree, counting also the contribution
from P, we have deg (F,) = deg,(H,) + deg, (¢ztP/Y) + 1 < 6g — 1 and deg_(F}) =
deg_(Hy)+deg_(2tP/Y)—1 < 2g—1. For the (-degree, we check that deg (2tP/Y) = 0,
which makes deg.(Fy) = deg;(H,) + deg.(xtP/Y’) < 0. We thus complete the induction
step.

We have proved that, under the specialization p; = 0 for ¢ > K, the series F}, has the
form stated in Theorem . But, since the numbers dgf ¢+ do not depend on K, we
can let K — oo in and conclude that this equality holds without considering this
specialization. This concludes the proof of Theorem [4.20] O
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Overview of omitted proofs

We have just proved Theorem [£.20] however using several intermediate statements without
proof (yet) in order to (we hope) clarify the global structure of the proof. All these
statements will be proved in Section [£.3.3] and £.3.4] In order to help the reader check
that we do not forget any proof(!), we list here the statements stated without proof so
far, and indicate where their proofs locate.

e Proposition [£.30] and Lemma [4.26] which deal with the action of the operator T,

are proved at the end of Section [£.3.3] The rest of Section contains other
propositions and lemmas that prepare these proofs.

e Proposition [£.23] is proved in Section [4.3.4] where we also prove Proposition [4.24]
Proposition is also proved in Section [£.3.4] This proof is rather long, due to

the sheer volume of explicit computations using the explicit expression of the series
Fy.

Therefore, at the end of Section and [£.3.4] the proof of Theorem will be com-
pleted (without omissions). The two remaining statements (Theorem and 4.19) about
rotation systems will be deduced from Theorem [4.20] in Section {4.3.5]

Reference of notation

Since the following proofs are based on heavy computations, we now offer a summary
of notation that we will define and use later in the form of Tables. Table [4.1] contains
a list of formal power series that are crucial to our proofs, while Table [4.2] contains a
list of domains in which we work, and Table is a list of operators that we will use.
Entries include pointers to related propositions. These tables can be used as a reference
of notation.

Definition Related Propositions
2k —1
z z=1 (1 + ( I )pkzk) Prop. 4.34}, 4.36
u u = z(1+ uz)? Prop. 4.34} 4.36
1—uz
Prop. |4.36], |4.
S T us rop. |4.36}, |4.33
Y, C (Mi)iz1, (Gliz1 Ea. (4.30), (4.25), (4.26) Prop. 4.30, 4.33
K
0 > pra* Prop. [4.22] 14.23
k=1
Y 1 —tx(2Fy + 0) Prop. |4.22 |4.23

Table 4.1: List of series

4.3.3 Structure of the Greek variables

In this section we establish several properties of the Greek variables defined in Sec-
tion [£.3.1} In particular we will prove Proposition [£.30] and Lemma [£.26l We also fix
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Definition
g {71,¢ (M)iz1, (Giz1)
Q[l Jlrc (1i)i=1, (Gi)iz1, 8,8~ 1]
6. @it 1( (U4 i (G 5™

Table 4.2: List of sets and domains

Definition Related Propositions
r kat Prop. 4.30], 4.35|, |4.36} |4.37
,; apk
Vk =1, pp2t v aF2¥ Prop. 4.33}, |4.37
D Vk =1, pp2t — kpp2® Prop. 4.33] |4.37] 14.40
Ops Formal differentiation by pj that ig- -
nores the dependence of z on py
O > Pkl Prop. 4.40} |4.41] [4.42
k=1
1
0 Y\ VEk>1Va,zp2®— | - — S DPEPrZ” Prop. 4.40} |4.41
E 147y
II Yk > 1,25 — p, Prop. 4.40} |4.45
= Vi > 1,25 % Prop. 4.40, 4.45

Table 4.3: List of operators
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some notation that will be used in the rest of this chapter. In this section, we will
exceptionally consider all p’s, without considering the restriction by K.

A projected version of the Greek variables

We start by fixing some notation and by defining some spaces and operators that will be
used throughout the rest of the chapter. First we let G = {7, 0, ¢, (1:)i>1, ((;)i=1} be the
set of all Greek variables defined in and (4.26). Elements of G are infinite linear
combinations of p,z*. Acting on such objects, we define the linear operators:

O L pp2k — k2, D ¥ pp2¥ — kppat. (4.37)
We notice that D coincides with the operator zd/dz in the domain at which we are
looking. Nevertheless, we will still use the current definition of D to underline the fact

that it is defined on (potentially infinite) linear combinations of py2*. Recall that the

variable z = z(t;py1, pa, .. .) defined by (4.23)) is an element of Q[p1, po, ... ][[t]] without
constant term. Therefore, each formal power series A € Q[x, p1, pa, . .. ][[2]] is an element
of Q[z, p1,pa,...][[t]]. Recall that, in this ring, the operator I' is defined by:

0
I'= k:xk—,
,;1 0Pk
where % is the partial differentiation with respect to pg in Q[z, p1, p2, ... ][[t]]. We now

introduce another operator d,,, given by the partial differentiation with respect to pj in
Q[x, p1,pa, - .- 1[[2]] omitting the dependency of z in py. Equivalently, 0,, is defined in
Q[z,p1,p2,---][[2]] by the formula:

0 0z 0

L2 A,
Opx  Opy 02 + (4.38)

Our first statement deals with the action of © on elements of G. The operator © can
be seen as a projection of infinitely many variables to polynomials in the single variable
x. Here and later it will be convenient to work with the variable s defined by

def ]' —uz
def _ 4.39
° 1+ uz ( )
Proposition 4.33. The action of the operator © on elements of G is given by:
L L 2
Oy = (s — 1), O¢ = 57 (s — 1)
2 4
1 )
On= (s =D +s7 —2), G = (s —s)(s* = 1), i =1,

1 A N .
@Uizw<(5—3 )65) (s =3s7+2),i=>1

In particular, the images O(n + ), O(( — ), On;, OC fori =1 is a basis of the vector
space (s71 — 5)Q[s?, s72].

Proof. The proof is elementary but let us sketch the computations that are not totally
obvious if not performed in the right way. We observe, and will use several times, that by

the Lagrange inversion formula, one has [2]s = —2 (25:12) 2! for any ¢ > 1. Our proof will
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take two parts, the first to prove the expressions of the images of Greek variables under
the projection O, the second to study the vector space they span.

Expression of Greek variables projected by ©
By definition we have ©y = >} _, (%k_ l)xkzk, so to prove the first equality we need to

show that [z¥]3s71 = (Qkk_ ")2* for all k > 1. To this end, we first observe by a direct

computation that s> = 1 — 4zz, which implies that 2z2(ds/0x) = s — s~'. It follows that

(2F] 25 — [xk]; (s - 2xéis> (1 - 28)[2H]s,

2k—1

. )z’c from the observation above. The value of O( is easily checked

which is equal to (
similarly, namely

[xk]i(s L) - [:Ek]; (s - xa‘ls> _ 1;k[xk]s _ 2";__11 (%k_ 1) -

To check the value of ©¢;, we observe again that s> — 1 = —4xz and Qx%s =5—51,

therefore

[xk] (3_1 - 5)(32 — 1)i = (—4Z>i[l‘k_i](3_1 — S) - (_42)% . 2(2' . k,)[xk—z]s

o (22— 2\ o () Uk(k— 1) (k—i)  (2k—TY ,
= (=072 (k—z’—l)z _(2k—1)(2k—3)...(2k—2z’—1)( k )Z

which agrees with what we expect from the definition of ;.
To compute ©n and On;, we first notice that ©D = x(d/0x)©, and we observe that

n=Dy—~,m=Dn, n=Dn_.

We can then compute the action of © on these variables:

B 0 1, o
@n—(xax 1)@7—4(5 357 +2),

6 ’ 1 -1 a : -3 —1
On; = (x6x> On = 9i+2 ((3—3 )a) (877 =357 +2).

Spanned vector space

We now prove the last statement of the proposition. We have ©(¢ — ) = (s — s71)/4
and O¢ = (st — 5)(s* — 1)’ of degree 2i + 1 in s, and they form a triangular basis of
(s71—s)Q[s?]. We observe that O(n+7) = (s—s')s ?/4 and On; is in (s7' —5)s?Q[s7?]
of degree 2i + 1 in s7!, and also that they form a triangular basis for (s7 — s)s2Q[s™?].
This proves that altogether these variables span the whole desired space. O

The next proposition collects some partial derivatives of our main variables that will
be useful afterwards.
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Proposition 4.34. We have the following expressions of partial derivatives of the variable

sets (t,x) and (z,u):

du  (1+uz)?

or 1—uz
ou  2(1+7)%u®
at (L—n)(1—uz)’

Y

dz  (1+9)°
ot 1—n’
0z

a?:o

ﬁ B (2k’;1)zk+1 au B

oo, 1—n

2U2 (2]6]{/.71) Zk+1

Coope (L—uz)(1-n)

Proof. The proof is a simple check from the definitions of u, z and the Greek variables in
({4.24), (4.23), (4.25) and (4.26)), via implicit differentiation. O

Action of I' and proofs of Proposition |4.30{ and Lemma |4.26

We are now ready to study more explicitly the action of I". The next statement is obvious
from the definition of I'.

Proposition 4.35. The operator T' is a derivation, i.e. ['(AB) = AT'B + BT A.

Proof. Since T' =Y, ka*(0/0py) is a weighted sum of partial differential operators, the
result thus follows. O

The action of I' on variables u, z, s can be examined by direct computation.
Proposition 4.36. We have

25 2(s7t —s) us (st —=1)(s7! —s)
A1 —=m) 4(1 =) ’

Proof. We proceed by direct computation by recalling the differentials computed in Propo-
sition .34k

(57 5

[s=—> — 5
° 8(1—mn)s?

I'z = T'u =

5 2m — 1
k m
I'z = E kx —kt (1 + 521 ( m )pmz )

k>1
2k — 1 1 2k — 1
=t k( )xkzk + ——(I'2) k:( )pkzk
]; k 1+ ]; k

z 1
-~ 0 T .
1+7(7+m+1+7(@w+n)

By solving this linear equation, we obtain I'z.
To obtain T'u, we notice that T is a derivation and apply it to u = (1 +u2)? to obtain

Tu =u(l+uz)" 2 2(1 +uz) (Tu)z + (T2)u),

which leads to the expression of I'u.
Finally, using the fact that I' is a derivation and the expressions of I'z and ['u, we
easily verify the expression of I's. O
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Proposition 4.37. For G a linear combination of Greek variables, we have

FG=(4j1m+e>DG

Proof. Since G is a linear combination of Greek variables, it is an infinite linear combina-
tion of pxz*. Recalling the definition (4.38)) of the operator d,,, we have:

0z 0
I'G =) ka*—G =) ka* =G+ ) ki"0, G
l; ];1 (9pk 0z ];1 Pr
= hat == ”DG +6DG
k=1
() +0) D6 - (=5 L 6) D
B — \4(1 —n)s? ’
where the last equality uses the value of I'z given by Proposition O

We are now prepared to prove Proposition [£.30] and Lemma [4.26]

Proof of Proposition[4.30. The fact that I" is a derivation was proved in Proposition [4.35]

The action of I" on uz can be deduced easily from Proposition To obtain explicit

formulas giving the action of I', we use Proposition [4.37] For G € G, the value of DG is
given by the following list, which is straight-forward to prove from the definitions:

_ _ _n, ¢

Dy=mn+vy, Dn=m, D¢=5+3

Dn; = niqa,

DQ=;O%+DQ+Ebﬂj%1+M*W@+m>

Y

Since all the quantities appearing on the right-hand side of these equalities are linear
combinations of elements of G, their images by © can be computed thanks to Proposi-
tion 4.33. Therefore, using Proposition 4.37, we can compute explicitly the value of I'G
for G € G, which leads to the values given in Proposition O

Proof of Lemma[{.20. For A € Q(u, z,G), since the operator I' is a derivation, we have
the following equality.

0 0 0
A+ 5 A+(M) A+(F77 p A+ ( i) A+Z I'G)

0
A+(I'z
u +< ) ( =1 =1 agz

A= (Tu)— 5
By Proposition and Proposition [£.30] with the fact that s = (1 — uz)(1 + uz)™!, we
easily verify that ['A is also an element of Q(u, z,G). Moreover, if the poles of A in u are
among +2~ !, then so are the poles of I'A. Note also that since s has degree 0 in u, the
quantity I'G for G € {z} UG has degree 0. Since I'u has degree 1, and since differentiations
decrease the degree by 1, we conclude that the degree of I'A is at most the degree of A,
both as rational fractions in w.

We now assume that A is uz-symmetric. For G € {z} U G, the operator % preserves
the wz-antisymmetry, and according to Proposition .36 and Proposition [4.30, I'G is
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uz-antisymmetric. Therefore, (FG) A is uz-symmetric, being the product of two uz-
antisymmetric factors. For wu, accordmg to Proposition | u Ty is uz-symmetric. We

now inspect 2 A. By uz-antisymmetry, A(u) = —A(u‘lz_Q), and we have
ud ud 0A
Alu) = —— A(u -1 —2 -1 -2/ —1_-2
90w = L4ty -2 P ),

SO S—SA is uz-symmetric. Therefore, all terms in the expression of I'A above are uz-
symmetric, thus also I"A. O

4.3.4 Structure of the kernel and its expansions at critical points

In this section we study the kernel Y (u) at the points u = +27! via explicit computations.
This is the place where the Greek variables emerge. The purpose of this section is to give
the proofs of the propositions concerning Y, namely Proposition [4.23] Proposition [4.24]
and Proposition [4.29] which will conclude the proof of all auxiliary results stated in proof
of Theorem [4.20] We recall that Y (u) is defined as

Y=1- ZL‘t(QFO + 9)

Proof of Proposition[{.23. We can rewrite # in the following form:

K K ok K 2%h—1
Di pr(l + uz) (1 + zu)
GZZEZZ uk :<1+ZU)ZPk2k—

] uk ok
2%—
2k — 1
)k
IEEE D
K —
2k — 1
U’
1—|—uz§ ; <k‘+f)‘
We recall the expression of Fy in Theorem (4.3]) to compute 2F, + 6 directly:
K k=1 k—1
2k —1 2k —1
2F, +60 = (1 2 — k 0t
0+ (+uz)( ];sz ( Zu ( ) szuz(k+€))>
K - 0
2k —1 2k —1
—(1 9 _ k 0t _ 0t '
oo (80C) - B

We observe that u™* (2Fy +6) = (1+uz)Q(u) with Q(u) polynomial in u of degree 2K — 1.
The polynomial Q(u) has the additional property that [u*]Q(u) is a polynomial in z, and

for k > K — 1, [uF]Q(u) is divisible by z2*F=K)+1,
We now evaluate 2Fj + 0 at the point u = 2

- —2(2—2ka (2 (2:+_g1)_€i<2:+_£1)>)
=2<2+2];1pk2k(2 k_l)>

=44 4y.

Mw

= (1 +uz)

—1.

(2Fy +6)
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Therefore Q|,_.-1 = (2 + 27)z~%. We now write

(1+uz)*(1+7) —uz(2F, + 0)
(1+uz)?(1+7)

Y=1—$t<2FQ+€)= ,

so that
(1+uz)(1+ Y = (1 +uz)(1 +y)u " — 2Q(u).

When evaluated at u = 1/z, the right-hand side vanishes, which means that the left-hand
side, which is a polynomial in u of degree 2K — 1, has (1 — uz) as factor. We can thus
write:

N(u)(1 —uz)
Y —
uB=H 1 + uz)(1 4 7)
with N (u) polynomial in u of degree 2(K — 1). O

Proof of Proposition[{.2]. We first observe that Y? is uz-symmetric. Indeed, using the
quadratic method (see e.g. [9, 28] and Example 3 in Chapter [2.3.3), we can rewrite the
Tutte equation (4.1) of planar m-constellations for m = 2 as follows:

(1 —at(2Fy + 0))* = 2*20% — dat — 220 + 1 — dat(QFy — OF).

The right-hand side is a Laurent polynomial in x, therefore it is uz-symmetric. Since Y =
1—xt(2Fy+0), we conclude that Y2 is uz-symmetric. Now, since Y is a Laurent polynomial
in uz, it follows that Y is either uz-symmetric or uz-antisymmetric (indeed Y (u)? —
Y?(272u™1) is equal to zero and factors into (Y (u) — Y (z2u™))(Y(u) + Y(2%u™')), so
one of the two factors must be equal to zero, as a Laurent polynomial).

To determine whether Y is uz-symmetric or uz-antisymmetric, we examine its poles
at uz = 0 and uz = c0. Using the expression Y = 1 — xt(2F, + 0), the definition of § and
the explicit expression of Fj given in Theorem , it is straightforward to check that:

Y (u) ~ —tpr/(uz)" when uz — 0, Y (u) ~ tpp(uz)*! when uz — 0.

We conclude that Y is uz-antisymmetric.

Now we study the zeros of N(u) by studying the Newton polygon of N(u), defined as
the convex hull of the points (i, ) € R? such that the monomial u’z’ occurs in N (u).

We will rely on the computations done in the previous proof. We first observe that
[uf (1 +uz)(1+75)u"t—2Q(u)) is a polynomial in z with a constant term 1, therefore
the same holds for [u®~'|N(u), which implies that the point B = (K —1,0) occurs in the
Newton polygon of N(u). Moreover, we observe that [u®]((1+uz)(1+v)uf"!—2Q(u)) =
—[u®]2Q(w). But [u']Q(u) = pk, therefore the point A = (0,1) is present in the Newton
polygon of N(u). For any k < K — 1, since [u*]Q(u) is a polynomial in z, the point
(k,0) is never in the Newton polygon of N(u). Therefore, the segment AB is a side of the
Newton polygon of N(u), and accounts for the (K — 1) small roots of N(u), whose series

expansions start with the power z/(5-1).

We then observe that [u?5 1] ((1+uz)(1+7)u® 1 —2Q(u)) = —z[u*71Q(u) = pr2*K.
Therefore, the point C' = (2(K — 1),2K — 1) occurs in the Newton polygon of N(u).
Furthermore, for any & > K — 1, [uf]((1 + u2)(1 + y)uft — 2Q(u)) = —z[u*]Q(u),
and [u*]Q(u) is divisible by zF~5+1 thus [u*]N(u) is divisible by z2*~%)*2 The point
corresponding to this term is (k,2(k — K) + 2), and is always above the segment BC.
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We conclude that BC' is a side of the Newton polygon of N(u), which accounts for the
(K — 1) large roots of N(u), whose series expansions start with the power z~K=D/(K=1),

It remains to prove that the transformation v — u~'272? exchanges large and small
zeros of N(u). Let ug be a small zero of N(u), it is also a zero of Y (u). But YV is uz-
antisymmetric, therefore Y (ug) = Y (ug'272), thus ug'z72 is also a zero of Y (u), and it
is clearly not 1/z. The only possibility is that ug 272 is a zero of N(u) that is also large.
Since the transformation u <> u~*z72 is involutive, we conclude that it exchanges small

and large zeros of N(u). O

We now study the expansion of Y (u) at critical points. This is where (finally!) Greek
variables appear, and what explains their presence in Theorem [4.20]

We will start by the Taylor expansion of 2Fy + 6. Since we are computing the Taylor
expansion by successive differentiation by w, for simplicity, we will use the shorthand 0,
for d/0u. For integers ¢ and a, we define the falling factorial (¢), to be (£), = (¢ —
...(0l —a+1).

Proposition 4.38. At u = 1/z, we have the following Taylor expansion of 2Fy + 6:

Bl
2F0+9:4+47—2(1—77)(1—uz)—i—Z(l—uz)“ (n+7)+ Z Ciami

=
i=1

a=2 %

Here c;’a are rational numbers depending only on i, a.

Proof. We proceed by computing successive derivatives evaluated at u = 1/z. In the proof
of Proposition , we already showed that (2Fy + 6)],_, ), =4+ 4y, which accounts for
the first term. For other terms, we rewrite the expression of 2F + 6 we used in the proof
of Proposition by grouping together powers of (uz):

K k=1 0
2k —1 2k —1
_ k 0
2Fy + 60 = (1 +uz) (2—k_§1pkz (E_Eluz <k+€) —é_g_ u'z (k:+€>>>

k

K k—1 ok — k 1
(2 4 2uz) DLz u£z€< ) + > uz ( ))
S (S e

=2
K 0
2k —1

+ pk2k< ugz( ) utzt ))

1; E—Zk o+t —k+1 k 6—1

K 0
2k 2k 2 2k —1

— (249 k 0 0t 2 .
(2 + uz)+kz_:1pkz (ZZ uz(k+€) ;uz(k+€>+k+1( i )uz)

Now we compute the differentiation of 2F, + 6 by u evaluated at u = 1/z:

i i 2%k 2 (2% —1
au(2Fg+8)|u:1/z=2z+zZpkz ZE k;+€ ZE .y +m )

k=1 {=—Fk (=2

e Ee () ) )

=2z — zipkzk(Qk —2) <2kk_ ) — 22(1 — ).

k=1
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For any a > 2, the a-th differentiation of 2F, + 6 by u evaluated at v = 1/z is

02(2Fy + 0)],_,, = ZW <_Z (k:+€> zk: <k+f)>

_ I;pkzk <Z(—1)a (/ﬁz) (C+a—1),— ; (lff e) (e)a> |

(=1

We first compute the quantity Z];:l(f)a (lffg)

to consider the following formal power series:

-Zoze() -2 ()Y

given a > 2 fixed for any k. It is natural

We choose to compute D, via a combinatorial interpretation in terms of lattice paths.

Note that the number [y*]D,/a! counts paths of length 2k with up steps (1,1) and
down steps (—1, 1), starting from the origin and ending at height 2¢ (with k + ¢ up steps
and k — ¢ down steps), alongside with a set of a elements chosen among integers from 0 to
20 called the set of heights. By decomposing the whole path at the last passage for each
height in the set of heights, we have the following equality:

Da(y) = alE(y)(1 + C(y))C(y)*.

Here, E(y) is the OGF of paths of even length ending at 0, and C(y) is the OGF of
paths of even length ending at a strictly positive height. In both OGFs, the variable
y marks the half-length of paths. All these series are classically expressed in terms of
the series of Dyck paths as follows. Let B(y) be the series of Dyck paths, we have by

classical decompositions E(y) = m — 1 and C(y) = 135&52. But we know that

B(y) satisfies the equation B(y) = 1 + yB(y)? as showed in Example 2 of Section [2.3.3]
so we finally obtain the expression of D,:

By = "YImW gy L o=t (11_4y - 1) ,

Duy) = %! L, 1 N
)= et T =y \1— 4y -4y ’

We now compute the quantity Ee L0+ a—1),(
consider the following OGF:

g () g S ()

k=0

h H) given a > 2 fixed for any k. We

The combinatorial interpretation of T,(y) is essentially the same as D,(y), but in this
case the a heights are not necessarily distinct (or to say that the set of heights becomes
the multiset of height). Therefore, we have

1) = )1+ C0)IC) = i (= 1) (e 1)
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Since [ppzFt?] 0%(2F, + O)uzi)z = [y¥]((—=1)*T,(y)—D,(y)), we now consider (—1)*T,(y)—
D,(y), which gives

-0 - 45 gt (g ) (o))

We observe that, no matter a is even or odd, when viewed as a polynomial in \/W’

(—=1)%T,(y) — D,(y) is always a linear combination of terms of the form 4y(1 — 4y)*=%? for
t € N, and we also observe that [y*]4y(1 — 4y)!=3/2 = [2F2F]422(1 — 422)73/2. We thus
have the following expression of J;(2Fy + 0)],,_, .

aa(QFO + 0)|u 1/z

(-1 1 4y 1 ot 1 ol
. 1 -
= }:mz ( 9a+1 M1—4y1—4y<( 1—4y+') +< 1—4y>

1%5*)
I(—=1)* . —1 ;
L1091 a (2a ) s72(s7L = 5) Z (a ” )Sm

1=0

We observe that ©n; = 5s73(s™ —s)?, and since O1;41 = (s—s~')d,0n;, by induction
on i we know that On;, as a Laurent polynomial in s, has a factor (s — s7')? for i >
1. Therefore, from Proposition we know that, for any polynomial P(s72) in s72,
O (s72(s—s)P(s7?)) isa linear combination of (77 + ) and n; for i = 0, and we have
[n+7]071 (s7%(s — s71)P(s72)) = 4P(1) by the fact that O(n+v) = s 2(s —s7!)/4. We
thus have

az<2F0 + Q>|u=1/z = a’lza(_l)a 77 + ’7 G, anl ’
for some rational numbers c;,. ]
We now perform a very similar computation for the other pole u = —1/z.

Proposition 4.39. At u = —1/z, we have the following Taylor expansion of 2Fy + 6:
L5
2Fh +0 =2(1+¢)(1 + uz) + 2(1 +uz)* | ((—7) + Z CiaGi |-

a=>2 i=1

Here c;, are rational numbers depending only on i, a.

Proof. For the constant term, we first recall the following expression in the proof of
Proposition [4.23}

2% — 1 0 2%k — 1
0t 00
2F) + 0 = (1 +uz2) (2— E PrZ (_E uz(k—I—f)_ _E, uz<k+£)>)

It is obvious that (2F, + 0)|,__,,, vanishes.
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For other terms, we will recycle the following expression of 2Fy + 6 in the proof of
Proposition [4.38}

K 0 k
2k 2k 2 2k —1
2F)+0 = (2+2uz)+ Y ppzt < u£z£< ) — > u'z ( ) + ( )uz) :
2t | 2w () = 2 ) s

k=1 —k

The first-order differentiation becomes

a (ZFO + 9)’1/,*71/2

_QZ—ZZW <£Zk_ (k+€) i <k+£>_ki1(%k_l>>
_22—Zipk22_2k(kk_ ):22(1+().

For any a > 2, the a-th differentiation of 2Fy + 6 evaluated at u = —1/z is

0%(2Fy + 0)| ). = 2° Zpkz (Z <k2k£> (C+a—1), i (szg)(e)a).

/=1 /=1

We now borrow the combinatorial interpretation presented in the proof of Proposi-
tion [4.38] Consider the following OGFs:

0= Zraevel)- ZZ ()G

- Bt oo n( ) ez pon (T ()

We can see that [pr2"T¢] 024(2F, + Oz 1), = [v*1(T.(y) — (—=1)*Dq(y)). Furthermore,
these series have combinatorial interpretation similar to D,(y) and T,(y) in the proof of
Proposition [4.38, with the only difference that the parity of the height at the end also
contributes as a sign. We define C (y) = I_eryBBy) We have the following equalities, with
C(y) and E(y) borrowed from the proof of Proposition [4.38}

Cly) = ;( [—dy—1),
Dult) = alB)(1 + )W) = i (V=g = 1)
Tiu) = alB)(1 + Cu)Y'Clo) = i (V= 1)

Therefore, we have
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We observe that for any value of a > 2, T,(y) — (=1)*Dy(y) is a linear combination
of terms of the form m(l — 4y)!, and we also observe that [y*] \/i%y(l — 4yt =

[xkzk]\/%(l —4zz)". We thus have the following expression of 05 (2Fy +0)|,_ ;.

aa(QFO + 9)|u——1/z

- N (o (VT (v )

2%l e a—1
_ "o-1 -1 2i
- % O (s —s7) ;) ( o )s

We observe that ©(C — ) = (s — s~ )/4 and O = (s7! — s)(s* — 1)". Therefore, for
any polynomial P, we have that ©71((s — s7!)P(s?)) is a linear combination of ( — v and
G, and [¢ —~]© 1((5 “HP(s?) =4P(1 ) Hence, we have

(452

0a2Fy +0)],_yye = 2"al | (C=7) + D) €G

i=1

for some rational numbers c;,. O
With Proposition and Proposition 4.39, we can prove Proposition 4.29,
Proof of Proposition[{.29. We will first rewrite ztP/Y as
xtP 1 —wuz 1
Y ltuz(1+ ) (9, 4 g)

uz

And now we substitute the Taylor expansion of 2F, + 6 at u = +z7! into the above
formula to obtain the Taylor expansion of ztP/Y at u = +27*
We first treat the point u = 1/z:

xtP 1—wuz
Y (8—4(1—uz) +2(1 —u2)? + 2i>3(1 —u2))(1+7) — (2 — (1—u2))(2F, + 6)

4<1 =) = B = u2) (= 1) + Sl 2ch o1 — )
+ Z i —)-H(l _uz)a.

) a,az2|al

The treatment for u = —1/z is similar:
wtP 2—(1+uz)
Y o =Y+ u) (T +7) — (14 uz)(2F, + 6)
24 (1 —uz2)
- I
(1+u2)? |20+ Q) + Tpoal + w2 (140 + 23 6 |
]_ a _
= — + Z c C—(14—1@2)“ . O

(1 + C)(l + u2)2 a,a(l + C)Z(a)-&-l

a,a=2|a|
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At this point, we have finished the proof of the rooted case of our main results (Theo-
rem , including all the statements that had been stated in Section . It remains
to prove the unrooted labeled case (Theorem and Theorem , which will be the
purpose of the next section.

4.3.5 Unrooting step and proof of Theorems |4.17| and

In this section, we deduce Theorem from Theorem [£.20] and we also check the
exceptional case of genus 1 given by Theorem

When applied to the EGF L, of rotation systems (o., 0., ¢) of bipartite maps (cf.
Section , the operator I' defined in can be seen as picking one element in a
cycle of ¢, since a cycle of length k in ¢ stands for a face of degree 2k, which is tracked
by the variable p,. Equivalently, we can say that I' picks a label from 1 to n in a rotation
system formed by permutations in 5,,, which corresponds to a bipartite map with n edges.
In the perspective of bipartite maps, the operator I' distinguishes an edge in the map,
which can then be considered as the root, since the orientation of the root is already fixed
by vertex colors. Therefore, I'L, is the EGF of rotation systems of bipartite maps with
a distinguished edge, which are essentially bipartite maps with arbitrary labels on their
edges, while the root is the distinguished edge. Since a bipartite map with n edges has
n! possible labelings, which cancels out the factor (n!)~! in the EGF L,, we thus have
F,=TL,.

Since the series L, and Fj, are related by F, = I'L,, studying L, from F, essentially
amounts to inverting the differential operator I'; i.e., heuristically, to perform some kind of
integration. Since in our case the OGFs of rooted bipartite maps given in Theorem [£.20]
are rational in our given set of parameters, it is no surprise that an important part of
the work will be to show that this integration gives rise to no logarithm. This section is
divided in two steps. We first construct two operators that enable us to “partially” invert
the operator I' (Proposition , and we reduce the inversion of the operator I' to the
computation of a univariate integral. Then we conclude the proof of Theorem [4.17] by
proving that this integral contains no logarithms, making joint use of two combinatorial
arguments: a disymmetry-type theorem and an algebraicity statement proved with bijec-
tive tools in [38]. As we have taken the projective limit in the proof of Theorem to
remove the restriction p, = 0 for k£ > K, all generating functions we consider here contain
all possible p;’s.

The operators ¢ and []

The first idea of the proof is inspired by [79] and consists in inverting the operator I’
in two steps.

We define the ring L. formed by elements f of Q[p1, ps, ... ][[2]] such that for all k£ = 0,
the coefficient of 2* in f is a homogeneous polynomial in the p; of degree k (where the
degree of p; is defined to be 7). Equivalently, L. = Q[[2p1, 2%p2, 2°p3, ... ]].

Note that any formal power series in the Greek variables with coefficients in Q, con-
sidered as an element of Q[py,pa,...][[#]], is an element of L. Note also that L, is an
element of L, since the factor (1 + 7) in the change of variable z = ¢(1 + ) is also in
L. Indeed, if we view L, as a series in ¢, the coefficient of t* for k > 0 is a homogeneous
polynomial of degree k in the p;, since the sum of face degrees in a map is equal to twice
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the number of edges. Given the form of the change of variable t < z given by (4.23)),

namely ¢t = z(1+ >, (ngl)pkzk)_l, this clearly implies that as a series in z, L, is in L.

We now introduce the linear operators [] and ¢ on Q[x, p1,p2, ... ][[z]] defined by

1 gl
k a __ . a -
Cz"paz® = (k Too +7) PPz, O = §k PkOpy »

where 0, is the differential operator defined by (4.38]) in Section |4.3.3 that is, differenti-

ation of p; that ignores the dependence of z on py. We have the following proposition.

Proposition 4.40. For any R € L, we have
OR =[TR.
In particular, OL, = [JF.

Proof. The proof is mainly a careful application of the chain rule and of the computations
already made in Section[£.3.3] Let R € L. Since I is a weighted sum of partial differential
operators, we have:

0 0
PR = () 5 R+ D (Tpi) 6, R = (T'2) SR+ > kako, R.
k k=1

Therefore,
0
Zk] kx*o, R = (P — ([z) az> R.

We now define the linear operators

o
iy

def —_ Dk
< 2% — py, :zewkH?.

By applying = to the last equality, we get:

OR =Y prdp R =E (F — ([z) a) R
k

0z

OR
==EI'R—=((IT'z)— ).
(257)
We thus need to study = ((Fz)%—f). We notice that, over the ring L, the operators
Iy, ka*d,, and % are equal. We recall that 'z = 5;;217_87)7’)2 with s = i;gz from Propo-
sition [4.30l Since R € L does not depend on z, we have II(AR) = (ILA)R for any A. We
thus have

HFRzH((Fz)(Z\f) —I—Hkakaka: (H (Fz> +1) ziRz 1—1—7727(9]%

k=1 &

This is the only point in the proof where we use the assumption that R € L. Note that
1+
we have used that (H (%) + 1) = (z_l Dk kpk£z> +1= 177 where the first equality

comes from the definition of IT and I'; and the second follows from Proposition [4.34] and
the definitions of v and n. We thus have
20 1-—

Ui
—R =——III'R.
0z 1+~
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Substituting this equality in the previous expression of };, -, pr0p, R and recalling I'z =

(s '—9)z
4s2(1-n)

we obtain

-1

> pudp R = ETR — E (H) (IIT)R

= 4s2(1 + )
—_ Y
==I'R — IIMR
(1+ 7)( )
=[I'R.

We recall from (4.37] - the operator D that sends pp2"* to kprz*. he second equality follows
from the fact that === 2 = DO (s3—s71), from Proposmon . the list of images of
D in the proof of Proposmon and a direct computation. The last equality is straight-
forward from the definitions of [],II, and =. This concludes the proof that QR = [JI'R
for R € L.

Finally, since F, = 'L, and L, € L, it follows that L, = [(OF}. m

Proposition 4.41. 0L, is a rational function of the Greek variables, i.e.: OL, = R with
R € Q(G9), whose denominator is of the form (1 —n)*(1 + {)*(1 + )¢ for a,b = 0 and
ce{0,1}.

Proof. We are going to use Theorem [.20]and the fact that ¢ L, = (JF,,. By Theorem [£.20]
and since F, is uz-antisymmetric, we know that F} is an element of (s™* —s)Q(G)[s?, s,
where s = (1 —uz)(1 + uz)™" as in Section m Therefore, we can write

F Z QZR“

iel

where I < Z a finite set of integers and R; € Q(G) is a rational function in the Greek
variables for each ¢ € I. Since OL, = [JF}, we have:

OL, = 2 R;O((s7 —s)s%). (4.40)

Now, by Proposition [4.33 the vector space (s™' — s)Q[s2, s?| is spanned by the basis
B ={0¢,i=1;0((—7); ©(n+~); On;,i = 1}. Moreover, the action of [] on the basis
B is given by the formulas:

G
o = X, - 4.41
e¢ Th (4.41)
C—7
(¢ — = 4.42
€= = it (442
(1 —n)
O + - L 4.43
6 (7 +7) - (1.43)
Vi
; = i1 — . 4.44
D@nz Ni—1 1+ v ( )
Here, X; is a linear combination of {, (1, (s ..., (; with rational coefficients. These formulas
follow from the fact that (10 : py2* — (% — m) pkz and from the definitions of Greek

variables given in (£.25) and (4.26). Returning to (4.40), it proves that OL, is a rational
function of the Greek variables, L, € Q(G). O
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Inverting ¢

Let S € Q(G) be a rational function in the Greek variables, depending on a finite
number of Greek variables. Since each Greek variable is a linear function of the py, it
is clear that { leaves each Greek variable invariant. Using the fact that ¢ is a sum of
differential operators, we can extend the domain of { to rational functions in the Greek
variables, which implies that (.S is given by a simple univariate derivation:

d
(OS)(vn, vy, (vNi)iz1, (VGi)iz1) = %S(Uﬁa vy, vC, (V1) i1, (VGi)iz1)- (4.45)

This implies the following proposition.

Proposition 4.42. The series L, is given by

1
Lg = J dUR(W?a vy, v¢, (Uﬁi)z;l, (UCz‘)z>1)7

0

where R is the rational function such that OL, = (JF, = R(n,7,(, (M:)iz1, ((i)iz1)-

Proof. We simply integrate with S = L, for v from 0 to 1. The only thing to check
is the initial condition, namely that R = 0 when all Greek variables are equal to zero.
This is clear, since this specialization is equivalent to substitute z = 0, and for ¢ > 1
there is no map with 0 edge. [

Corollary 4.43. The series L, has the following form:
Lg = R1 + RQ 10g(1 — 77) + R3 log(l + C) + R4 log(l + ’7)

where Ry, Ry, R3, Ry are rational functions in (n,7,C, (0;)i=1, ((;)i=1) depending on finitely
many Greek variables. Furthermore, the denominator of Ry is of the form (1—n)*(1+¢)°
fora,b>= 0.

Proof. This follows from the last two propositions. Note that R; has no pole at v = —1
since Fy has at most a simple pole at 7 = —1 from Proposition [4.41] O

Algebraicity and proof of Theorem

In order to prove Theorem from Corollary it suffices to show that Ry =
Rs = Ry = 0, i.e. no logarithm appears in the integration procedure. To this end, it
suffices to show that the series L, is algebraic under some specializations that leaves only
a finite number of py’s to be non-zero. This algebraicity will be proved here using a detour
via arguments with a stronger combinatorial flavor and an algebraicity statement proved
with bijective methods in [3§].

The following lemma is a variant for maps of genus ¢ of the “disymmetry theo-
rem”, which is classical in the enumeration of labeled trees (and much popularized in
the book [I7]; see also [45] for a use in the context of planar maps).

We will first define some EGFs of rotation systems of bipartite maps that we will
be using in the following. For a rotation system (0., 0., ¢) with permutations in S, of a
bipartite map M with n edges, cycles in o, and o, stands for vertices of M, while cycles in
¢ stands for faces in M and integers from 1 to n stand for edges in M (c¢f. Section .



4.3. THE HIGHER GENUS CASE FOR BIPARTITE MAPS 125

We denote by Lzme‘” (resp. Li;“ce and Lgdge) the EGF of such rotation systems with a
marked cycle in o, or o, (resp. a marked cycle in ¢ for Lf;“ce and an integer from 1 to n
in a rotation system with permutations in S,, for Lgdge). We can see that the superscripts
of these EGFs correspond to the counterpart in bipartite maps of their marked elements.

Lemma 4.44 (Disymmetry theorem for maps). The EGFs L;e”ex, Lg“ce, L;dge are related

by
__ rwvertexr face edge
(2 - 29)Ly = Lyere® 4 LIoee — [odoe,

Proof. This is a straightforward consequence of Euler’s formula. n

Now we observe that, for clear combinatorial reasons, Lg“ce and Lgdge can be obtained
from Fj, as follows:
face _ —
L)% = EF,

g

Lee = 11F,,

where Z : 2F — B and 1T : x¥ +— p;, as defined previously in the proof of Proposition m

We thus have the following lemma.
Lemma 4.45. L/*“ and L% are rational functions of 0,7, ¢, (1i)iz1, (G)is1-

Proof. Given Theorem [4.20] it is enough to prove that = and II send (s~! — s)Q[s72, s?
to rational functions of Greek variables. But by Proposition [£.33] for any element F' €
(s7! — 5)Q[s72, s?], there is a (finite) linear combination G of elements of the set B =
{n+v¢—;m,i = 1;¢,i = 1} such that FF = ©G. Now it is clear from the definitions
that we have
1O : pp — pr E@:pkH%.

We have to check that each of these two operators sends an element of B to a linear
combination of Greek variables. For the first one it is obvious. For the second one, we
first observe that, by a simple check using the definition of Greek variables, we have
EO(n +7) =7, E6(C —7) = 2¢ — 7, and ZO(n;) = -1 for i > 1 (with 5y = 7).
Finally, for ¢+ > 2, one similarly checks that there exist rational numbers «;, §; such that
=Z0( = o;(; + ;=20 _1 which is enough to conclude by induction, together with the base
case ZOC¢; = 1/3(2¢; — 2v + 4(¢). O

We now need the following result.

Proposition 4.46 ([38]). Fiz g > 1 and D < N a finite subset of the integers of maz-
imum at least 2. Let pp denote the substitution p; = liep for i = 1. The series
Ly**(pp) is algebraic, i.e there exists a mon-zero polynomial Q € QIt; f] such that

Q (t; L= (t;...p; = liep ... )) = 0.

Proof. Since this statement is not written in this form in [38], let us clarify where it comes
from. Let Oy = Oy(t;p1,p2,...) be the ordinary generating function of rooted bipartite
maps with one pointed vertex, by the number of edges (variable t) and the faces (variable
p; for faces of half-degree i, including the root face). Then it is easy to see that we have:
td vertex
Og - %Lg .
Now in [38, Equation (8.2)] (and more precisely in the case m = 2 of that reference), it is
proved that there exists an algebraic series Rp = Rp(t; p;,i € D) such that Rp(t =0) =0
and
to

Og(pD) = aitRDa
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where O, (pp) is the series O, under the substitution p; = 1;cp as above. Since Lgme’”(t =
0) = 0 for clear combinatorial reasons, we have L)*"*(pp) = Rp. O

We can now prove Theorem [£.17]

Proof of Theorem[{.17. For any finite set D of integers with maximum at least 2, we
denote by pp the substitution of variables p; = 1,cp. For g > 2, we can conclude from
Lemma (4.44] Lemma and Proposition that the series L,(pp) after the substitu-
tion pp for any valid set D is algebraic. We recall that in Corollary Ry, R3, Ry comes
with logarithmic factors log(1 — n),log(1 + ¢),log(1 + ). Under the specialization pp,
these logarithm factors becomes logarithms of polynomials in z, which are not algebraic.
Therefore, the sum

Ry(pp)log(1 —n(pp)) + Rs(pp)log(1 + ((pp)) + Ra(pp)log(1 +v(pn))

should be algebraic, which implies that when z tends to infinity, the sum should behave
as ©(z%) for an integer a.

We suppose that at least one of Rs, R3, Ry is non-zero. For a finite set of integers
D, let d be the maximum of D. When z — 400, we must have Ry(pp) = c2(d)z’ +
0(z"), R3(pp) = c3(d)z" + o(z"), Ra(pp) = ca(d)z* + o(z") for the same integer 7 such that
at least one of the ¢;(d)’s is non-zero. Here, all the ¢;(d)’s are polynomials of d. By taking
the coefficient of the dominating term of power z%log(z?) in each term of the relation
above, we have

(ca(d) + ca(d)) log(d — 1) + c3(d) — ca(d) log(2d — 1) = 0.

Since at least one of the ¢;(d)’s is non-zero, this equation has no integral solution for
d > 2. Therefore, our hypothesis of at least one of Ry, R3, R4 being non-zero is false.
Equivalently, for D with maximum at least 3, the rational functions Ry, R3, R4 defined in
Corollary must vanish under the specialization pp:

Ry(pp) =0, Rs(pp) =0, R4(pp)=0.

Therefore, to conclude the proof that Ry = Ry = Ry = 0 (hence the proof of T heorem
it suffices to show that if @ is a polynomial in the Greek variables, @ € Q[G], such that
Q(pp) = 0 for all finite D, then @ = 0.

We proceed by an infinite descent on the Greek degree deg, , where each Greek variable
is of degree 1. Let @ be a non-zero element of Q[G] such that Q(pp) = 0 for all finite
D. Tt is clear that ) cannot be a constant, therefore deg (Q) = 1. We denote by c the
maximal index of all Greek variables 7; and (; that appears in (), by k£ the Greek degree
deg, (Q) of Q.

Let D be a finite subset of N, and d its maximal. Let ¢ > d be a large enough integer.
We define X = (%;1). It is clear that X is much larger than ¢, which is in turns much
larger that any element in D by definition. We denote by D* = D u {¢}. We observe
that, for any Greek variable G € G, we have

G(pp+) = G(pp) + Ra(0)X.

Here, Rg(¢) is a rational function of ¢ that depends on the Greek variable G. It is an
element of the set
(-1

; : 4 :
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This equality is due to the fact that all Greek variables are linear in p;’s. We can thus
express Q(pp=) as

k
Qpp+) = > Qi(t, pp) X"
i=0

Here, the coefficients Q;(¢, pp) are rational in ¢ and polynomial in G(pp) for all Greek
variables G € G. Furthermore, the total degree of Q;(¢, pp) in all Greek variable special-
izations G(pp) is at most k£ — i. When ¢ tends to infinity, X grows exponentially with ¢,
whereas the coefficients have at most a polynomial growth:

Q(t.pp) = 0 ((W -0 (- (™ 1))) - o),

Since the coefficients Q;(¢, pp) are negligible comparing to X, for an infinity of suffi-
ciently large ¢ (thus X), the specialization Q(pp=) is dominated by the monomial X such
that @Q;(¢,pp) is non-zero. However, since Q(pp+) = 0, for all i and D we must have
Q:(¢,pp) = 0 for infinitely many values of ¢.

We now take ()1, which must exist since k¥ > 1. From its definition, we have the
following expression:

Q1(0,pp) = [X']Q(pp+)

_ fg(pD) L)

(Po) + 571 5 (Po)
c i oQ ¢ (—2)i+1€(£—1)~--(€—z‘) Q
+;€ (t=1)7 - (pp) +; BT D)@l 3 (3l —%i ~1) &, PP

oQ
on

The partial differentiations come from the distinction of the Greek variable G that takes
the part Rg(¢)X instead of G(pp).

We notice that all the partial differentiations are specialized with pp. We fix the set
D, and for an infinite number of values of ¢, we have Q1(¢,pp) = 0. Therefore, we must
have Q1 (¢, pp) = 0 as a rational fraction of /. However, since the elements in the set .S, (¢)
of rational fractions in ¢ that appears in the expression of Q1(¢, pp) above are all linearly
independent in the space of rational fractions of ¢, we must have (0Q/0G)(pp) = 0 for all
Greek variables G € G. The equality holds for all finite set D. Since () is not constant,
it must depend on at least one Greek variable G. Therefore, Q¢ = 0Q/0G is a non-zero
polynomial in Greek variables with deg, (Q¢) < deg,(Q) such that Qa(pp) = 0 for all
finite set D. We can thus complete the infinite descent by finding a non-zero polynomial
with strictly smaller degree. Since the infinite descent on degree is impossible, we thus
conclude that such @) cannot exist. Therefore, the only polynomial ) in Greek variables
such that Q(pp) = 0 for all finite set D is () = 0. We have especially Ry = R3 = Ry = 0,
which is what we want.

We thus have proved the rationality of L, for g > 2, and by Corollary [4.43] the
denominator of L, is of the form (1 — n)*(1 + ¢)* for a,b = 0.

We now prove that, expressed as a rational function in Greek variables, L, does not
depend on «. From the last paragraph we already know that L, is a polynomial in v, i.e.
L, = Zf:o Siv" where k = 0, the S; are rational function of G\{v}, and Sy # 0. Recall
that Fy, = 'Ly, so from the fact that I' is a derivation and from Proposition [£.30} Fy, is
also polynomial in 7. Moreover, the only Greek variable G € G such that I'G depends on

v is G = 7, and we have more precisely ['y = 45:7;)‘;2(77 +79) + 3(s73 = s71). Tt follows
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that the coefficient of ¥* in F} is equal to k(I'Sy) + %Sk. From the structure of F,
provided by Theorem m (F,, as a rational function in Greek variables and uz, does not
depend on 7), this coefficient is equal to zero. It is easy to see that this is impossible if
k > 0. Indeed, looking at Proposition [4.30] again, ['S; contains either a pole of order at

least 5 at u = 1/z, or a pole of order at least 1 at u = —1/z, which cannot be cancelled
by the factor (s™® —s71) in the second term. Therefore k = 0, i.e. L, does not depend of
.

We now prove the bound conditions. Using the three notions of degree in Section |4.3.2),
we only need to check that L, is a homogeneous sum of Greek degree deg. (L,) =2 — 2g
and deg, (L,) = deg_(L,) < 6(g — 1). We recall the following expression of F.

0 0
F,=TL Ly+ (' Ly+ ) (I'n; L,+ ) (TG
g g(C)C (U)a ;Ua ;Cacl

For the Greek degree, we observe that, by Proposition and the fact that L, has
no constant term, if L, is not homogeneous in Greek degree, then F, = I'L, cannot
be homogeneous. Therefore, L, must be homogeneous in deg,, with degree deg. (L,) =
deg, (Fy) +1=2—2g.

For the pole degree deg_, let T' = cn,Cs(1 —n) (1 + ()P for c€ Q, a,b > 0 and «,
two partitions be the largest term in L, such that deg, (T') = deg, (L,) when ordered first
alphabetically by « then also alphabetically by 5. We will now discuss by cases.

If & and 8 are both empty, then deg, (7') = 0 and we are done.

We now suppose that « is empty but not 5. We observe that, for a term S in the
form s (1 —n)~%(1 + ¢)7?, if we order the terms in I'S first by the power of (1 + uz)
in the denominator then alphabetically by v in their factor of the form (,, then the
largest term .S” comes from (I'( )05 /(s , with pole degree deg_(S’) = 2|3’| + 1 and no
possibility of cancellation. Therefore, in Fj, there is a term 7" coming from (I'(g, )0T"/0(g,
that can have no cancellation by the maximality of $ and by our previous observation,
and deg_(7") = 2|5| + 1. But since deg_(F,) < 2g—1, we have deg_(L,) = 2|f| < 2g—2,
which concludes this case.

The final case is that « is non-empty. We observe that, for a term S in the form
NarCar (1 —n)~%(1 + ¢)7?, if we order the terms in I'S first by the power of (1 — uz) in
the denominator then alphabetically by v in their factor of the form 7,, then the largest
term S" comes from (I'n.;)0S/0n,,, with pole degree deg, (S') = 2|a/| + 2[8'| + 5 and
no possibility of cancellation. Therefore, similarly to the previous case, by the fact that
deg, (F,) < 6g — 1, we conclude that deg, (L,) = 2|a| + 2|5| < 6(g — 1). We thus cover
all cases and conclude the proof. O]

We now address the only remaining point, which is the case of genus 1.

Proof of Theorem[{.19. We first compute the OGF F; using Theorem for g = 1.
Recall that the value of I'Fj is explicitly given in , from which we observe that I'Fj
has a pole of order 4 at v = 1/z and no pole at v = —1/z. Therefore, in order to compute
the residues in in the case g = 1, we need to compute explicitly the first 4 terms at
u = 1/z and the first 2 terms at u = —1/z in the expansions in Proposition .29 Now,
since the proofs of Proposition and Proposition are computationally effective,
we can follow these proofs to compute these quantities explicitly (it is easier, and more
reliable, to use a computer algebra system here). We find the expression in (4.29)).
Observe that another approach to prove the last equality is to use the structure given
by Theorem , and compute sufficiently many terms of the expression of F (for example
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by iterating the Tutte equation (4.22))) to identify all undetermined coefficients appearing
in the finite sum (4.28]).

We now note that all the steps performed to go from Theorem [£.20] to Corollary [4.43]
are valid when g = 1, and are computationally effective. Therefore, using the explicit
expression of F; given above, these steps can be followed to obtain an explicit expression
of Ly. These computations are automatic (and better performed with a computer algebra
system), thus not printed here. O

4.3.6 Final comments

We conclude this section with several comments.

Firstly, as explained before, we have only used two basic ideas from the topological
recursion of [64], but in a way that is accessible to combinatorialists. It remains to be
seen if other ideas of the topological recursion can be applied to bipartite maps or to the
more general m-constellations. In the case of bipartite maps, these ideas may provide
a different way of performing the “unrooting” step in Section similar to [63], Sec.
I11-4.2]. However, our proof has the nice advantage of providing a partially combinato-
rial explanation of the absence of logarithms in genus ¢ > 1. More generally, it seems
that understanding the link between the dissymmetry argument we used here and state-
ments such as [63, Theorem IIT 4.2] is an interesting question from the viewpoint of the
topological recursion itself.

Our next comment is about computational efficiency. While it is tempting to use
Theorem to compute the explicit expression of F, (and then L,), it is much easier
to simply compute the first few terms of Fj, (and L,) using recursively the Tutte equa-
tion (4.22), and then determine the unknown coefficients in (4.27) or (4.28) by solving
a linear system (recall that and are finite sums, so there are indeed finitely
many coefficients to determine).

Thirdly, structural results similar to Theorem for the OGF F g(m) (1,22, ...,Tm)
of bipartite maps of genus g carrying m > 1 marked faces whose sizes are recorded in
the exponents of variables xy, xs, ..., x,,, are easily derived from our results. Indeed, this
series is obtained by applying m times to L, the rooting operator I', one time in each
variable. More precisely:

Fg(m)('rbx% s 7'Tm) = F1F2 RN Fng7

where I'; = >}, -, kxfa}%. Since the action of I'; is fully described by Proposition (up

to replacing s by s; = i;ﬁ’z, where u; = x;(1 + zu;)?), the series Fg(m)(arl,xg, ey Tyy) are
easily computable rational functions in the Greek variables and the (1 + w;2).
We observe as well that, by replacing all the p; by zero in the series F’ g(m) (X1, T2y oy T,

one obtains the generating function of bipartite maps with exactly m faces, where the z;
control the face degrees. Therefore, these functions have a nice structure as well, being
polynomials in the 1/(1 + w;z) with rational coefficients. This special case also follows
from the results of [I03]. Note however that [103] keeps track of one more variable (keep-
ing control on the number of vertices of each color in their expressions). It is probably
possible to extend our result to this case.

In this subsection, we have seen how to resolve the functional equation of constellations
in higher genera, but only in the bipartite case m = 2. It is thus natural to try to extend
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our proof to general m, which will also be a unified proof for similar results on classical
and monotone Hurwitz numbers as in [85], [79]. Such a proof may be possible using the
topological recursion, from which our proof of the bipartite case draws important ideas.

This is a work in progress.



Chapter 5

Maps and generalized Tamari
intervals

In the two previous chapters, we are mostly concerned with the enumeration of maps
themselves. Starting from this chapter, we will see how map enumeration results can be
used to enumerate other related combinatorial objects. Although often studied with alge-
braic approaches, maps are firstly combinatorial objects with a simple and geometrically
intuitive definition. It is thus most desirable to study them via combinatorial bijections,
which can lead to more direct understanding of their structure and their relation with
other combinatorial objects. This bijective approach to maps has been very successful,
especially in the planar case. We have seen in Section 1 a brief review on how we can use
bijections to relate maps to other combinatorial objects, either for enumeration or for the
study of their structure. This chapter will be a demonstration of this bijective approach.
More precisely, we will study the bijective link between non-separable planar maps and
intervals in generalized Tamari lattices.

In Section [2.3.3] we have seen Dyck paths and plane trees in the prism of generating
functions, and we know that they are both enumerated by Catalan numbers. There are
also many other combinatorial classes that are enumerated by Catalan numbers, such
as binary trees and planar triangulations of a polygon. These objects are sometimes
called Catalan objects in general. More examples of Catalan objects can be found in [130,
Exercise 6.19]. These Catalan objects are often closely related by simple bijections. The
versatility of Catalan numbers even extends to the realm of algebra (see, for example, [130,
Exercise 6.25]), which leads to interesting interactions between algebra and combinatorics.

It is thus not surprising to see algebraic structures defined on Catalan objects. The
Tamari lattice is a partial order defined on a class of Catalan objects of the same size, for
instance Dyck paths with 2n steps for a given natural number n. Its precise definition
will be given later. While being deeply rooted in algebra, the Tamari lattice is also a well
studied object in algebraic combinatorics, and it is related to many other combinatorial
and algebraic objects. There are also many generalizations of the Tamari lattice, for ex-
ample the m-Tamari lattice introduced by Bergeron (see [18]) and the generalized Tamari
lattice introduced by Préville-Ratelle and Viennot in [123].

Albeit having been studied intensively for a long time, the Tamari lattice and its
generalizations still have many mysterious enumerative aspects and bijective links yet
to be unearthed. In this chapter, we will follow and develop a surprising enumerative
link from intervals in these lattices to planar maps. In [37], out of motivation from
algebra, Chapoton counted the number of intervals in the Tamari lattice using a recursive
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Figure 5.1: The same Dyck path presented in up/down steps and in north/east steps

decomposition approach, and he found that these intervals share the same enumeration
formula with planar simple triangulations, which was rather unexpected. Later, Bernardi
and Bonichon gave in [20] a direct bijection between these objects. Similarly, the numbers
of usual and labeled intervals in the m-Tamari lattice in [31] and [30] are also given by
simple planar-map-like formulas, but a combinatorial explanation is still missing. All these
links between intervals in Tamari-like lattices and planar maps motivate us to search for
a bijection between intervals in the generalized Tamari lattice and some family of planar
maps. And indeed, we discovered such a bijection, contributing to the combinatorial
understanding of the Tamari lattice and its generalizations.

This chapter is based on a yet unpublished article in collaboration with Louis-Francois
Préville-Ratelle at University of Talca. An extended abstract was accepted in the con-
ference Formal Power Series and Algebraic Combinatorics 2016 (FPSAC 2016). In this
chapter, by introducing a family of trees with labels on leaves called decorated trees, we
establish a natural bijection from non-separable planar maps to intervals in generalized
Tamari lattices. As a consequence, we obtain a formula for the number for intervals in
generalized Tamari lattices of a given size.

5.1 Tamari lattice and its generalizations

We have already seen Dyck paths in Section [2.3.3] We recall that a Dyck path is a
sequence of steps u = (1,1) and d = (1, —1), starting from the origin (0, 0), ending on the
x-axis and staying in the upper plane with non-negative y coordinate. A Dyck path can
thus be viewed as a word formed by two letters {u, d}. Exceptionally in this section, we
will represent Dyck paths in another way, by replacing steps v = (1,1) and d = (1,—1)
by steps N = (0,1) and E = (1,0). In this setting, a Dyck path is thus a directed path on
72, starting from the origin, going only by north or east unit steps, ending on the diagonal
line y = z and always staying above the diagonal. If we see Dyck paths as words, we
simply replace the letters {u,d} by {N, E} in the corresponding words. We can also see
this graphical presentation as a rotated and scaled version of the original one. Figure [5.1
shows an example of the two ways to look at a Dyck path.

In this section, we change the presentation of the well-known and well-studied Dyck
path for the sake of simplifying the introduction of its generalizations that we will study.
We should note that, after the necessary notions are introduced in the section, we will
revert to the usual up/down representation for the rest of this chapter.

By the definition of Dyck paths, it is clear that they are all of even length. We denote
by D, the set of Dyck paths with 2n steps, and we say that the size of a Dyck path is
half of its length. Before introducing the Tamari lattice, which is a special partial order
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Figure 5.2: Construction of a new Dyck path that covers a given Dyck path

on the set D,,, we first review some definitions concerning partial orders.
A partial order < over a set E is a binary relation that is:

1. Reflexive: Vo € F,z < x;
2. Antisymmetric: Ve,ye E,x <yry<zx = x =1y;
3. Transitive: Vz,y,ze B,x <yAry<z — x < z.

Its non-reflexive version is often denoted by <. A set E endowed with a partial order
is called a partially ordered set (or simply poset), and is sometimes denoted by (F,>).
In the following, we will only consider finite posets. Let (E,>) be a finite poset. An
element a in E is said to cover another element b if b < a and there is no element
¢ in between, i.e. satisfying b < ¢ < a. We can thus define another binary relation
called the covering relation corresponding to the partial order <. A covering relation is
sometimes called the transitive reduction of its corresponding partial order, and by taking
the transitive closure, we can obtain a partial order from a covering relation. Therefore,
we can define a finite partial order by specifying its covering relation. We often represent a
poset graphically by its Hasse diagram, in which the elements of the poset are represented
by vertices. If x covers y, then we place the vertex of x above that of y, and draw an edge
from y to x. See Figure for an example of a Hasse diagram.

We can study extra structures on partial orders. A lattice is a partial order that
verifies extra properties, which will not be precised here since they are not needed in the
following. However, we still mention here that a lattice has a minimal and a maximal
element. We will also be interested in intervals in lattices. In a partial order (F, <), given
two comparable (but not necessary distinct) elements = < y, the interval [z, y] between
x and y is the subset F; of E formed by elements of the form z such that z < 2z < y,
endowed with the restriction of < on E;. We can also identify an interval with its minimal
and maximal element pair (z,y).

We can also construct new partial orders from existing partial orders. Given a partial
order (F, <), its dual is defined as the partial order (£, <*) on the same set of elements
E and the dual relation <* such that x <* y if y < x. To obtain the Hasse diagram of the
dual partial order (E, <*), we simply flip that of the original partial order (E, <) upside
down. It is worth mentioning that the dual of a lattice is still a lattice. An isomorphism
f between two partial orders (E;, <;) and (FEs, <2) is simply a bijection between F; and
E, such that, for any two elements z,y in Fy, we have z <; y if and only if f(x) <5 f(y).
In this case, the two partial orders are called isomorphic.

We now define a partial order < on the set D,, of Dyck paths by its covering relation.
For a grid point p above the diagonal, we define its horizontal distance as the number
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Figure 5.3: Hasse diagram of the Tamari lattice of order 4

of east steps we can take before reaching the diagonal. For instance, in the left Dyck
path of Figure [5.2] the grid point p has horizontal distance 2. Let D be a Dyck path in
D,,. We consider one of its valleys p, i.e. a grid point on D that is preceded by a step
E and followed by a step N. We then search for the next grid point p’ on D with the
same horizontal distance as p, and we denote by [p, p’] the segment of D between p and
p'. By exchanging [p,p’] with the step F that precedes p, we obtain a new Dyck path
D', and we say that D’ covers D, and we have D < D’. Figure gives an example of
this construction. By applying the same process to all Dyck paths and all their valleys,
we obtain a covering relation, which defines a partial order < on D,,. The poset (D,, X)
is the Tamari lattice of order n. As an example, Figure is the Hasse diagram of the
Tamari lattice of order 4.

Out of algebraic concern, Bergeron introduced the m-Tamari lattice, which is a natural
generalization of the usual Tamari lattice. More precisely, the introduction of the m-
Tamari lattice was inspired by many results and conjectures concerning the diagonal
coinvariant spaces of the symmetric group, also called Garsia-Haiman spaces. Interested
readers are referred to [16] and [91] for more information about this algebraic link.

The definition of the m-Tamari lattice itself is very similar to that of the usual Tamari
lattice, and is rather straight-forward. We first define a grid path as a path on Z?* formed
by north and east steps N and F that starts from the origin. Instead of taking the diagonal
y = x, we now take the m-diagonal y = x/m, and consider the set ng) of grid paths with
n steps N and mn steps F that start and end on the m-diagonal while staying above the
m-diagonal. These paths are also called m-ballot paths of size n. We can similarly define
the horizontal distance of a grid point with respect to the m-diagonal, and use it to define
a covering relation on the set D™, The procedure is exactly the same: for an element
D of D™, we pick one of its valleys p and find the next grid point p’ with the same
horizontal distance, then by exchanging the segment [p, p'| with the step E that precedes
p, we obtain another element D’ of D™ which covers D. Figure gives an example
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Figure 5.4: Construction of a covering m-ballot path from a given m-ballot path in the
m-Tamari lattice

Figure 5.5: Horizontal distance and the covering relation in TAM(v)

in the set Dé2). The partial order on D™ defined by the covering relation constructed
in this way is a lattice, and is called the m-Tamari lattice of order n. When m = 1, we
obtain the usual Tamari lattice.

But why do we restrict ourselves to straight lines for the diagonal? In fact, when
interpreted correctly, the same construction works for any grid path v formed by north
and east steps and gives a lattice. For a fixed grid path v formed by N and E, we
consider the set of grid paths D, formed by steps N and E that start and end at the
same points as v and that always stay weakly above v. The grid path v is also called the
canopy of the set D,, due to what it represents on binary trees (interested readers are
referred to [I123] for more details). We can similarly define the horizontal distance of a
grid point p to the west of the canopy v, which is given by the maximal number of east
steps that we can take starting from p without crossing v. The left part of Figure [5.5]
shows a grid path v and an element vy in its corresponding set D,, with the horizontal
distance of each grid point on v;. We can now define a covering relation as we have done
in previous cases: given a grid path v, in D,, we first pick a valley p of vy, then search
for the next grid point p’ with the same horizontal distance as p, and by exchanging the
segment [p, p’'| with the step E that precedes p, we obtain another element vy in D, that
covers vy, and we have v; < vy. The right part of Figure [5.5] gives an example of this
construction of covering elements in D,. We thus define a partial order on D,, which is
also a lattice, and it is called the generalized Tamari lattice with canopy v, denoted by
TAM(v). Generalized Tamari lattices were first defined by Préville-Ratelle and Viennot
in [123]. If we take v = (INE™)", the corresponding TAM(v) will be the m-Tamari lattice
of order n, which means that TAM(v) is a legitimate generalization of the usual Tamari
lattice and the m-Tamari lattice.

The most interesting fact about generalized Tamari lattices is not that they generalize
the usual Tamari lattice, but rather in the other way around: they reveal a fine structure
of the usual Tamari lattice. To make sense of this assertion, we need a few more notions.
For a Dyck path P = (p;)1<i<on Where p; are steps in the set {N, E}, let iq,...,1, be the
indices such that p;, = N. We define T'ype(P) as the following word w of length n — 1:
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Type: NENENENN

Figure 5.6: Two Dyck paths with the same type

for k < n—1,if p, = pi,+1 = N, then w, = E, otherwise w; = N. In other words,
for the i'" north step in P, if it is followed by a north step N (resp. an east step E),
then the i*" letter of the type Type(P) will be E (resp. N). This convention may look
strange, but later we will see that there is a good reason to adopt it. Since the last north
step of a Dyck path is always followed by an east step, it is not accounted in the type.
The type of Dyck path of size n is thus a word in N, E' of length n — 1. See Figure [5.6
for an illustration of how we determine the type of Dyck path. We observe that the type
of Dyck path can also be reinterpreted as a grid path. We say that two Dyck paths are
synchronized if they are of the same type. The term “synchronized” comes from the fact
that they have east steps on the same horizontal levels. Figure [5.6| shows an example of
a pair of synchronized Dyck paths.

We can now partition the elements of the usual Tamari lattice of order n according
to their 27! possible types. The upper part of Figure is such a partition of the usual
Tamari lattice of order n. We have three observations. The first one is that, given a type
v, elements in (D,, <) with the same type v form an interval (actually a sub-lattice),
denoted by I(v). The second one is that the interval I(v) of Dyck paths with a given
type v is isomorphic to the generalized Tamari lattice TAM(v) with diagonal (or canopy)
v, if we regard v as a grid path. These isomorphisms can be seen on the lower part of
Figure[5.7, The third one is that the set of intervals formed by elements of the same type
possesses a “central symmetry”, which is in fact a well-known isomorphism between the
usual Tamari lattice and its dual. For readers familiar with the usual Tamari lattice, in
its alternative definition using binary trees and tree rotation, this isomorphism is simply
taking the mirror image of binary trees in the lattice.

In fact, our observation is not a coincidence. They are in fact consequences of the main
results in [I123] of Préville-Ratelle and Viennot, where they introduced the generalized
Tamari lattice.

Theorem 5.1 (Theorem 3 in [123]). The usual Tamari lattice (D, <) of order n can be
partitioned into disjoint intervals I(v) according to the type of elements, where v can be
any word of length n — 1 consisting of letters N, E, namely

D.= |J I

ve{N,E}n—1

Furthermore, I(v) is isomorphic to TAM(v), the generalized Tamari lattice with v as
canopy.
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Theorem 5.2 (Theorem 2 in [123]). For a given grid path v, the lattice TAM(v) is
isomorphic to the dual of TAM(%), where v is the word v read from right to left, with
letters N and E exchanged.

An element in TAM(v) can be seen as a pair of non-crossing grid paths with the same
endpoints where v is the lower path. It is already known (c¢f. [55, 110]) that such pairs

of paths of length n — 1 > 0 are counted by Catalan number C, = —1- (2;1), which is also

the number of Dyck paths of size n. On the other hand, the partitioyri%f the usual Tamari
lattice (D, <) into intervals I(v) was already known to Loday and Ronco in [112], and
has been used in the study of the associahedron. Nevertheless, in [123] it was the first
time that we have a good grasp on the exact structure of these I(v)’s, which was done
through the prism of non-crossing grid paths.

We are now interested in the enumeration of intervals in the Tamari lattice and its
generalizations. It is also here that we discover a mysterious link between these intervals
and planar maps. Although the Tamari lattice is a relatively old object, the enumeration
of its intervals came up only relatively recently. In 2005, Chapoton tackled this problem

in [37] and obtained the following theorem.

Theorem 5.3 (Theorem 2.1 in [37]). The number of intervals in the usual Tamari lattice

of order n is
2 dn +1
nn+1)\n—-1/)

Curiously, this is also the number of 3-connected planar triangulations with n + 3
vertices, for which a formula was given by Tutte in [132].

The next step is the m-Tamari lattice. The following formula for the number of
intervals in the m-Tamari lattice was first conjectured by Bergeron and Préville-Ratelle
in [18], then proved in [31] by Bousquet-Mélou, Fusy and Préville-Ratelle.

Theorem 5.4 ((26) in [I8], Corollary 11 in [31]). The number of intervals in the m-
Tamari lattice of order n is

m+ 1 ((m+1)2n+m)

n(mn + 1) n—1

For readers familiar with the enumerative study of planar maps, we can see a strong
resemblance of this formula to formulas for many classes of planar maps. This resem-
blance is an indirect evidence that these intervals should also be related to planar maps.
Some, including me, believe that there must be a naturally-defined class of planar maps
parametrized by m that shares the same enumeration formula with intervals in the m-
Tamari lattice. This belief is somehow reinforced by the bijective correspondence of
intervals in the usual Tamari lattice (case m = 1) and simple planar triangulations in [20)]
by Bernardi and Bonichon.

In [30], Bousquet-Mélou, Chapuy and Préville-Ratelle also enumerated a labeled ver-
sion of intervals in the m-Tamari lattice. The study of these intervals has a motivation
from algebra, where it is conjectured that the number of intervals in the m-Tamari lattice
of order n is also the dimension of the alternating component of the trivariate Garsia-
Haiman space of the same order, while labeled intervals correspond to the entire trivariate
Garsia-Haiman space. This algebraic connection also motivated the introduction of the
generalized Tamari lattice TAM(v) in [123] by Préville-Ratelle and Viennot. We are thus
interested in the enumeration of intervals in generalized Tamari lattices. Since intervals



5.2. RECURSIVE DECOMPOSITIONS 139

in both the usual Tamari lattice and the m-Tamari lattice are related to planar maps, we
expect that we can relate intervals in generalized Tamari lattices to some class of planar
maps.

In this chapter, we will give an expression for the total number of intervals in gener-
alized Tamari lattices TAM(v) with canopy v of a given length n. This task seems to be
difficult, as we need to deal with many lattices. But by Theorem all such TAM(v)
can be found exactly once in the usual Tamari lattice, and are isomorphic to intervals
formed by Dyck paths of the same type. Therefore, intervals in TAM(v) are in bijection
with intervals [z,y] in the usual Tamari lattice such that = and y are of the same type.
Such intervals in the usual Tamari lattice are called a synchronized interval. A bijection
from intervals in generalized Tamari lattices to synchronized intervals is given in [123].
Our problem can thus be reduced to the enumeration of synchronized intervals, which is
more adapted to our purpose.

Our main contribution in this chapter is a bijection between synchronized intervals
(thus intervals in TAM(v)) and non-separable planar maps. To describe this bijection, we
need an intermediate structure called decorated tree, which is a kind of rooted trees with
labels on their leaves that satisfy certain conditions. We then show that an exploration
process gives a bijection between non-separable planar maps and decorated trees, and
there is a bijection between decorated trees and synchronized intervals.

As a consequence of our bijection, we give the following enumeration formula for the
number of intervals in |, TAM(v).

Theorem 5.5. The total number of intervals in TAM(v) over all possible v of length n—1
s given by

2(3n)!
(n+D!(2n+ 1)1

> Int(Tam(v)) = (5.1)

ve(N,E)n—1

This enumeration formula was first obtained by Tutte in [I34] for non-separable planar
maps. As an example, when n = 4, the formula is evaluated to 22, which is exactly
the number of intervals in all generalized Tamari lattices with a canopy of length 3, which
are illustrated in the lower part of Figure [5.7 At the end of this chapter, we will also
discuss some other enumerative consequences of our bijection.

5.2 Recursive decompositions

Starting from this section, we will revert to the usual representation of Dyck paths by up
steps u = (1,1) and down steps d = (1,—1). We can also view a Dyck path as a word
formed by letters {u,d}. However, the type Type(P) of a Dyck path P still uses letters
N and E. The choice of using diagonal steps {u,d} for Dyck paths is intentional. Dyck
paths are elements in the usual Tamari lattice, while the type of Dyck path, formed by
north and east steps {N, E'}, corresponds to the canopy of a generalized Tamari lattice.
We choose to use different notations for these two kinds of objects to underline the fact
that they are elements in different lattices.

We are now interested in the link between two families of objects: synchronized in-
tervals in the usual Tamari lattice on Dyck paths of size n, and non-separable planar
maps with n + 1 edges. In fact, their enumerations are governed by the same functional
equation. In this section, we show how to decompose recursively these two families of
combinatorial objects to obtain a functional equation of their generating functions. We
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reiterate that our main contribution, which is the enumeration of generalized intervals via
a non-recursive bijection, will be described explicitly in the next section.

5.2.1 Recursive decomposition of synchronized intervals

We define a properly pointed Dyck path to be a Dyck path P = P‘P" such that P*
and P" are Dyck paths, and P’ is not empty unless P is itself empty. Furthermore,
a properly pointed synchronized interval [P*PT, Q] is a synchronized interval where the
lower Dyck path is properly pointed. We recall that Z,, is the set of synchronized intervals
of size n, and we denote by Z> the set of properly pointed synchronized intervals of size
n.

Before giving a recursive decomposition of synchronized intervals, we need to introduce
some additional notation and borrow a lemma from [31].

There is a natural matching between up steps and down steps in a Dyck path defined
as follows: let u; be an up step of a Dyck path P, we draw a horizontal ray from the
middle of u; to the right until it meets a down step d;, and we say that wu; is matched with
d;. We denote by £p(u;) the distance from u; to d; in P considered as a word, which is
defined as the number of letters between w; and d; plus 1. For example, in P = uududd,
we have {p(u;) = 5, since its matching letter d is the one at the end. We define the
distance function Dp by Dp(i) = €p(u;), where u; is the i*" up step in P.

Lemma 5.6 (Proposition 5 in [31]). Let P and Q be two Dyck paths of size n. Then
P < @ in the Tamari lattice if and only if Dp(i) < Dg(i) for all 1 <i<n.

We can now describe a way to construct a larger synchronized interval from a smaller
synchronized interval and a properly-pointed synchronized interval.

Proposition 5.7. Let I} = [P{P, Q1] be a properly pointed synchronized interval and
I = [P, Q2] a synchronized interval. We construct the Dyck paths

P = uP!dP!P,, Q = uQdQs.

Then I = [P, Q)] is a synchronized interval. Moreover, this transformation from (I, I5)
to I is a bijection between U,=oZL) X Ups0L, and U,=oL,.

Proof. An illustration of the construction of I is given in Figure [5.8] To show that I is a
synchronized interval, we only need to show that P and @ have the same type, and [P, Q]
is an interval in the Tamari lattice. To show that Type(P) = Type(Q), we notice that
P, and (), are of the same type since they form a synchronized interval. It is clear that,
for two Dyck paths Py, P,, the type of their concatenation P, P, is the concatenation of
Type(P;) and Type(P,). Let W, = Type(uPfdP}) and Wy = Type(uQ:d). We only need
to show that Wy = Wy, We write W, = w; W] and Wy = wy W), where w; (resp. wy) is
the first letter of W, (resp. Ws), and W/ (resp. WJ) is the rest of the word Wy (resp. W5).
We clearly have w; = wy, since w; = N if and only if P{ is empty, which is equivalent to
Q1 being empty, which occurs if and only if wy = N. For the rests W/, since P/ is a Dyck
path which ends in d by definition, we have W] = Type(P{)Type(Py) = Type(P{, Pr).
The same argument applies to W5 and @1, which leads to W5 = Type(Q1). Since [Py, Q1]
is a synchronized interval, we have W] = WJ. We conclude that W; = W,. Therefore, P
and @ are of the same type. It is not difficult to show that [P, Q] is a Tamari interval
using Lemma[5.6/and the fact that both I; = [P{P],Q;] and I, = [P, Q»] are also Tamari
intervals.



5.2. RECURSIVE DECOMPOSITIONS 141

Figure 5.8: Composition of synchronized intervals

To show that the transformation we described is indeed a bijection, we only need to
show that we can decompose any non-empty Tamari interval I = [P, Q] back into (I3, ).
To go back from I = [P, Q] to (I1, I5), we only need to split P and Q into P = uP{dPl P,
and Q = uQ1dQ, such that P, P, P»,Q1, Q> are all Dyck paths with P, Q, of the same
length. This can be done by first cutting () at the first place that it touches again the
x-axis, where P also touches the x-axis. This cutting breaks @ into u@,d and ), and
P into P, and P,. We then perform the same operation on P; to cut it into qud and
P. We thus conclude that we indeed have a bijection between uU,>¢Z> x U,>0Z, and
Un>OIn- ]

Since the construction in Proposition [5.7]is a bijection, we can also see it in the reverse
direction as a recursive decomposition. We now translate the recursive decomposition in
Proposition into a functional equation for the generating function of synchronized
intervals. To this end, we need to investigate another statistic on synchronized intervals,
which will give us a suitable catalytic variable for our functional equation. A contact
of a Dyck path P is an intersection of P with the z-axis. Both endpoints of P are also
considered as contacts. Let contacts(P) be the number of contacts of P. We define F'(x,t)
as the following generating function of synchronized intervals:

F(x,t) = Z Z gn eontacts(P)—1

n=zl[P,QJel,

From Proposition , we know that a non-empty synchronized interval I = [P, Q] can
be decomposed into P = uP{dP! P, and Q = uQ,dQ,, where P{, PI, Py, Q1,Q, are all

Dyck paths, and both [P{P], Q1] and [P, Q] are synchronized intervals. The generating

functions for the intervals of the form [uP{dPy,uQd] is given by xt (1 + w :

where the divided difference accounts for pointing each non-initial contact (individually)
over all elements in Z, to obtain properly pointed intervals of the form I* = [P{P], Q].
Indeed, a non-empty Dyck path P, with £ + 1 contacts and length 2n has a contribution
of 2*t" to the generating function F'(z,t). Furthermore, there are exactly k ways to turn
P, into a properly pointed Dyck path P{ P!, by cutting at one of the contacts, except the
first one. When lifted from P{P} to uP{dPy, all contacts inside Pf except the initial one
are lost, which leads to k properly pointed Dyck paths with length 2n and a number of
contacts from 2 to k + 1. These properly pointed Dyck paths obtained from P; thus have
a total contribution of #"(x + 22 + --- + 2%) = a:tnfff’ltn, which accounts for the divided
difference. The term «t is for the added steps. On the other hand, we observe that the
path P = uP{dP! P, has contacts(P) — 1 = (contacts(uP{dP!')—1) + (contacts(Py)—1).
Therefore, from Proposition [5.7, we obtain the functional equation

Flat) = 2t(1 + Fla, 1)) <1 ; F(I”Z - f(l,t>> | (5.2)
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Figure 5.9: A non-separable planar map, and series/parallel decompositions of non-
separable planar maps

5.2.2 Recursive decomposition of non-separable planar maps

We now turn to non-separable planar maps, which were first enumerated by Tutte in [134]
using algebraic methods, then by Jacquard and Schaeffer in [99] using a bijection based
on their recursive decomposition. We recall that a non-separable planar map is a planar
map without cut vertex that contains at least two edges. Figure [5.9| gives an example
of such a map. Note that we exclude the two one-edge maps. We have the following
interesting property of non-separable planar maps.

Proposition 5.8 (Corollary IT in [134]). The dual of a non-separable planar map is also
non-separable.

There are two ways to decompose non-separable planar maps recursively. We will call
them “series” and “parallel” decompositions respectively. We only need one decomposition
for the functional equation, but describing both leads to a more thorough understanding.
In Figure [5.9) we sketch how larger maps can be built with smaller maps in both series
and parallel ways.

For the series decomposition of a non-separable planar map M, we delete its root, and
the remaining map M’ may cease to be non-separable. In M’, every cut vertex splits M’
into two parts, each containing an endpoint of the root. The remaining map is thus a
series of non-separable planar maps (and possibly single edges) linked by cut vertices (see
Figure , middle). Let M,, be the set of non-separable planar maps with n + 1 edges,
and M(x,t) the generating function of non-separable planar maps defined as

Ms(aj,t) = Z Z tnxdeg(outer face(M))fl.
n=z1 MeM,

For a component in the series, we root it at its first edge adjacent to the outer face
in clockwise order to obtain a non-separable planar map such that the root vertex is one
of the linking vertices in the chain. Conversely, from a non-separable planar map with
n+ 1 edges and the outer face of degree k + 1 (therefore of contribution t"z* in M,(z,t)),
there are k choices for the cut vertex other than the root vertex to obtain a component,
each adding a value from 1 to k to the outer face degree. These choices thus have a total
contribution of ¢"*1 Zle rt = txtnzkf_ltn. On the other hand, the contribution of a single
edge between two cut vertices is xt. Therefore, by the series decomposition we have

rt + xt M (z,t)—Ms(1,t)
- (5.3)

1_Cm+xﬂﬁﬁt%£ﬂ)

M(z,t) =
1

A reordering gives the same functional equation as (5.2)).
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For the parallel decomposition, we consider the effect of contracting the root. Let M’
be the map obtained from contracting the root edge of a non-separable planar map M, and
u the vertex of the map M’ resulting from the contraction of the root. The only possible
cut vertex in M’ is u. By deleting v and attaching a new vertex of each edge adjacent to
u, we have an ordered list of non-separable planar components (and possibly single edges)
that come in parallel (see Figure right). By identifying the newly-added vertices in
each connected component, we obtain an ordered list of non-separable planar maps (and
possibly loops). Let M,(z,t) be the generating function of non-separable planar maps as
follows:

M,(z,t) = Z trpdee®)—1,
MeM,,
Here, v is the root vertex of M

To obtain a non-separable component from a non-separable planar map, we only need
to split the root vertex into two, that is to say to partition edges adjacent to the root
vertex into two non-empty sets formed by consecutive edges. For a root vertex v of degree
k, this can be done by choosing a corner of v other than the root corner, and splitting the
edges by the chosen corner and the root corner. There are exactly k — 1 choices. From a
non-separable planar map with root vertex degree k, we can thus obtain k& — 1 different
non-separable components that we can use in the parallel decomposition, each with root
vertex degree from 1 to k& — 1. We can thus write a functional equation for M, with
the degree of the root vertex minus 1 as the statistics of the catalytic variable. We leave
readers to check that the parallel decomposition leads to the same equation as .

Since F, M, M, all obey the same functional equation, we have F' = M, = M,
therefore these objects are equi-enumerated under the specified statistics, which invites
us to search for a bijective proof. Observe that M, = M, already has a simple bijective
explanation by duality. For instance, for a non-separable planar map M, we take its dual
M and root it in a way such that the root vertex of M is the dual of the outer face of
M, and the outer face of MT is the dual of the root vertex of M. This bijection preserves
the number of edges and transfers the degree of the outer face to the degree of the vertex
from which the root points, which implies M, = M,

5.3 Bijections

Before we present our main contribution, which is a bijection between synchronized in-
tervals and non-separable planar maps, we will first give some intuition on how we came
up with this bijection.

In Section [I.2.2] we have seen quite a few bijections from planar maps to trees. The
main ideas of these bijections is more or less the same: using a certain exploration process
on a planar map (or its dual in some cases), we can construct a spanning tree of the map
by cutting open some edges, alongside with some labels or blossoms to remember which
edges to reconnect when restoring the map from the tree. We can thus imagine such an
exploration process that turns a non-separable planar map into a plane tree with some
extra labels. On the other hand, a synchronized interval is just a pair of Dyck paths, and
a Dyck path is not far from a plane tree. Indeed, there is a well-known bijection that
extracts a Dyck path from a plane tree: we do a traversal starting from the root along the
contour of the plane tree from left to right, and the variation of depths in the traversal
forms a Dyck path. Therefore, from a plane tree with some extra labels, we can easily
extract one Dyck path, and for the other we need to make use of the extra labels. To
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summarize, our strategy to establish the wanted bijection is to first devise an exploration
process to turn non-separable planar maps into trees with labels, then given such a tree
with labels, we extract a Dyck path from its tree structure, and another using also its
labels, and we will argue that the two Dyck paths form a synchronized interval.

We now present our main contribution. To describe our bijection from synchronized
intervals to non-separable planar maps, we first introduce a family of trees. We take the
convention that the root of a tree is of depth 0. The traversal order on the leaves of a tree
is simply the left-to-right order. A decorated tree is a rooted plane tree with an integer
not smaller than —1 attached to each leaf as a label, satisfying the following conditions:

1. For a leaf ¢ adjacent to a vertex of depth p, the label of ¢ is strictly smaller than p.

2. For each internal node of depth p > 0, there is at least one leaf in its descendants
with label at most p — 2.

3. For t a node of depth p and T" a sub-tree rooted at a child of ¢, consider leaves of
T’ in traversal order. If a leaf ¢ is labeled p (which is the depth of t), each leaf in
T’ coming before ¢ has a label at least p.

The right side of Figure gives an example of a decorated tree. In a decorated tree, a
leaf labeled with —1 is called a free leaf. We denote by 7, the set of decorated trees with
n edges (internal and external).

The definition of decorated trees may not be very intuitive, but after the introduction
of the exploration process, we will see that each condition captures an important aspect
of non-separable planar maps, and together they characterize trees that we obtain from
non-separable planar maps via the exploration process we will define.

5.3.1 From maps to trees

We start with a bijection from non-separable planar maps to decorated trees which relies
on the following exploration procedure. For a non-separable planar map M with a root
pointing from v to u, we perform a depth-first exploration of vertices in clockwise order
around each vertex, starting from v and the root. When the exploration along an edge
adjacent to the current vertex w encounters an already visited vertex x, we replace the
edge by a leaf attached to w labeled with the depth of x in the tree, with the convention
that the depth of v is —1. Since the map is non-separable, this exploration gives a spanning
tree whose root v has degree 1, or else v will be a cut vertex of the map. We then delete
the edge (v, u) to obtain T(M). Figure [5.10] gives an instance of the transformation T.

By abuse of notation, we identify internal nodes of T(M) with corresponding vertices
in M. We notice that, for children of the same vertex in the tree, the ones being visited
first in the map come last in the traversal order. Readers familiar with graph algorithms
will notice that this exploration procedure is very close to an algorithm proposed by
Hopcroft and Tarjan in [93] that finds 2-connected components of an undirected graph.
Indeed, our exploration procedure can be seen as an adaptation of that algorithm in the
case of planar maps, where there is a natural cyclic order for edges adjacent to a given
vertex.

We now present the inverse S of T, with an example illustrated in Figure [5.11] For
a decorated tree T' rooted at u, we define S(7') as the map obtained according to the
following steps.
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Figure 5.10: An example of the bijection T from non-separable planar maps to decorated
trees

Figure 5.11: An example of the bijection S from decorated trees to non-separable planar
maps

1. Attach an edge {u, v} to u with a new vertex v, and make it the root, pointing from
v to u.

2. In clockwise order, for each leaf ¢ in the tree starting from the last leaf in traversal
order, do the following. Let ¢ be the parent of ¢ and p the label of £. Let s be the
ancestor of ¢ of depth p, and e be the first edge of the path from s to ¢ (thus an edge
adjacent to s). We replace ¢ by an edge from ¢ to s by attaching its other end to s
just after e in clockwise order around s. See also the right-hand side of Figure [5.12

From the definitions of T, we will show that the first and third conditions of decorated
trees guarantee that T is an exploration tree of a certain planar map, and the second
guarantees the map is non-separable. We now give detailed proofs that T and S are
well-defined transformations between M and 7, and that they are in fact bijective and
inverses of each other.

Proposition 5.9. T(M,,) < T,.

Proof. Let M € M, be a non-separable planar map with n + 1 edges. It is clear that
T(M) has n edges. We suppose that the root of M points from v to u. We need to
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check the three conditions of decorated trees on T(M). For the first condition, let ¢ be a
leaf adjacent to a node ¢ of depth p in T(M), resulting from the exploration of the edge
e = {t,t'}. Tt follows from the exploration order that ¢’ is a vertex of M that was not
completely explored at the moment that e was visited. Thus, ¢’ is an ancestor of ¢ in
T(M), and the label of ¢ is strictly smaller than p. For the second condition, let ¢ be a
node of T(M) of depth p > 0. If all leaves in the sub-tree induced by ¢ have labels at
least p — 1, then any path linking ¢ and the root vertex v goes through the parent of ¢,
making it a cut vertex, which is forbidden. For the third condition, let ¢ be a node of
depth p and T” one of the sub-trees rooted at a child of ¢, and suppose that there is a leaf
¢ labeled p in T". By the exploration order, the cycle formed by the edge corresponding
to ¢ and the path from ¢ to t in T(M) encloses all leaves in 7" coming before ¢. Therefore,
any leaf coming before ¢ in 7" cannot have a label strictly less than p, or else there will
be a crossing in M that makes it not planar. With all conditions satisfied, T(M) is a
decorated tree. O

Proposition 5.10. S(7,) € M,,.

Proof. Let T € T, be a decorated tree with n edges. It is clear that S(T") is a map with
n + 1 edges. We first prove that S(7') is a non-separable planar map. It is not difficult to
show from the first and the third conditions of the definition of decorated trees and from
the definition of S that S(7") is planar. We suppose that S(7') is separable and ¢ is a cut
vertex. We cannot have ¢ = v since 7' is already a connected spanning tree of all vertices
besides v, therefore t is a vertex of 1. Suppose that ¢ has depth p. We consider the
connected component of S(7") containing v after removing ¢. It must contain all vertices
that are not descendants of . Therefore, for at least one sub-tree of t rooted at a child ¢/
of t, there is no leaf linking to ancestors of ¢, or equivalently this sub-tree only contains
leaves with labels greater than or equal to p, which violates the definition of decorated
trees since ¢’ has depth p + 1. O

Proposition 5.11. For any non-separable planar map M, we have S(T(M)) = M.

Proof. Using leaf labels, it is clear from the definitions that S(T(M)) is equal to M as a
graph, and we only need to show that they have the same cyclic order of edges around each
vertex. Let ¢ be an internal node of depth p in T(M). We consider its descendant leaves
of label p in one of its sub-trees 7" induced by a descendant edge e adjacent to t. Let ¢;
be such a leaf. When reconnecting, the new edge corresponding to ¢; should come before
e by construction of T(M), and it cannot encompass other sub-trees rooted at a child of
t, or else ¢ will be a cut vertex (see the left part of Figure [5.12)). If there are multiple
such leaves in 7", their order is fixed by planarity (see the right part of Figure[5.12)). The
reasoning also works for the extra vertex v that is not in T(M). There is thus only one
way to recover a planar map from T(M), and we have S(T(M)) = M. O

Proposition 5.12. For any decorated tree T', we have T(S(T')) =T

Proof. Let M = S(T). We only need to show that the exploration tree 7" of M is T
without labels. Closing each leaf one by one in the procedure S(7'), it is clear that the
exploration tree remains the same, therefore 7" =T O]

Theorem 5.13. The transformation T is a bijection from the set of non-separable planar
maps M,, to the set of decorated trees T, for anyn >0, and S is its inverse.

Proof. This is a consequence of Propositions [5.9] [5.10} [5.11] and [5.12} O]
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Figure 5.12: Illustration of the proof of Proposition

5.3.2 From trees to intervals

We now construct a bijection from decorated trees to synchronized intervals. For a dec-
orated tree T, we want to construct a synchronized interval [P(T"), Q(T)]. For the upper
path, we simply define Q(T") as the transformation from the tree 7' to a Dyck path by
taking the depth evolution in the tree traversal. The definition of P is more complicated.
We need to define a quantity on leaves of the tree 1" called the charge. The transformation
P takes the following steps.

1. Every leaf has an initial charge 0. For each internal vertex v of depth p > 0, we add
1 to the charge of the first leaf in its descendants (in traversal order) with label at
most p — 2. We observe that the total number of charges is exactly the number of
internal vertices.

2. We perform a traversal of the tree in order to construct a word in u,d. When we
first visit an internal edge, we append u to the word. When we first visit a leaf with
charge k, we append ud'™ to the word. We thus obtain the word P(T).

An example of the whole process is given in Figure [5.13] We now prove that the
transformations P and Q send a decorated tree to a synchronized interval.

Proposition 5.14. For a decorated tree T, the paths P(T) and Q(T') are Dyck paths, and
[P(T),Q(T)] is a synchronized interval.

Proof. Since Q(T) is the depth evolution of the traversal of T', it is a well-defined Dyck
path of length 2n, where n is the number of edges in T, which equals to the number of
internal vertices of T'. By the charging process, there are n charges on leaves in total, and
it is clear that P(7T) is also of length 2n with n up steps. We need to show that P(7T) is
positive. Consider a letter d in P(T"). The charge that gives rise to this letter d comes
from a non-root vertex t and goes onto a descendant leaf ¢ of t. Let e be the edge from ¢
to its parent. We pair up this letter d to the letter u in P(T') given by traversal of e. All
letters in P(T") can be paired up in this way, and by the traversal rule, in a pair, the letter
u always comes before the letter d since ¢ is a descendant of t. Therefore, P(T') is positive,
thus also a Dyck path. We can also easily see that Type(P(T)) = Type(Q(T)), since in
both P(T") and Q(T), a letter u is followed by a letter d if and only if it corresponds to a
leaf.
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Figure 5.13: An example of a decorated tree T, with the charges on its leaves and the
corresponding interval [P(T'), Q(T)]

We now need to show that [P(T), Q(T)] is a Tamari interval. Let u¥ be the i up
step in Q(T'), and e the edge in T that gives rise to u in the construction of Q(T). By
the definition of P and Q, it is clear that e also gives rise to the i*® up step u!” in P(T). If
we can show that Dp(i) < Dg(i) for all i, then by Lemma 5.6, we know that [P(T'), Q(T)]
is a Tamari interval.

Let v be the lower endpoint of the edge e, T” the sub-tree of T rooted at v, ¢ the
descendant leaf that v charges and p the depth of v. By the charging process, ¢ has a
label at most p — 2. Let df be the matching down step of u!” in P(7"). We prove that df
is generated during the traversal of ¢, from which it follows that Dp(i) < Dg(i) by the
definition of the distance function. Let k& > 1 be the number of charges of ¢. Consider
the segment P(e, () = ufWd*™! of P from e to ¢ in the traversal for the construction of
P(T). We first show that |P(e,£)|, < |P(e,l)|q, which implies that df’ is in P(e,£). To
this end, we only need to show that we can always pair an up step in P(e, ¢) with a down
step also in P(e,f). An up step is generated either by an internal edge or a leaf. For an
up step u, generated by an internal edge €’ visited in P(e, £), let v' be its lower endpoint
and ¢ the leaf charged by v'. We know that ¢/ = ¢ or ¢’ precedes ¢, therefore the down
step d, produced by the charge added to ¢ by the internal vertex v’ is already in P(e, {).
We pair u, with d,. For an up step arisen from visiting a leaf, we can pair it with the
first letter d given by the leaf. Therefore, |P(e,£)|, < |P(e,{)|q. We now show that df
is not in W. Indeed, since T is a decorated tree and ¢ has a label at most p — 2, by the
third condition of decorated trees, a descendant leaf ¢’ of v that precedes £ has a label at
least p — 1. All charges of ¢ come from internal nodes in 7" other than v and they are
all ancestors of ¢, which means that they are visited before ¢’ in the traversal. Therefore,
there are more u’s than d’s in any prefix of W, so df cannot be in W, thus it must be
among the down steps d**! produced by ¢, which completes the proof. O

We now describe the inverse transformation R, which sends a synchronized interval
[P, Q] to a decorated tree T' = R([P,Q]) by the following steps. A partial example is
illustrated in Figure We should note that the following definition of R does not use



5.3. BIJECTIONS 149

Figure 5.14: An example of how to recover leaf labels using the lower path P (here, leaf
with label 1)

the notion of charges in the definition of P. However, we will use the notion of charges to
prove that R is indeed the inverse transformation of [P, Q]. More precisely, we will show
how to read off, from a synchronized interval, the vertices that charge a given leaf on the
corresponding decorated tree without any knowledge on the labels.

1. We construct the tree structure of 1" from Q.

2. We perform the following procedure on each leaf, as illustrated in Figure [5.14] Let
¢ be a leaf. Suppose that ¢ gives rise to the i*" up step in Q. We look at the lowest
point u of the consecutive down steps that come after the i** up step in P, and we
draw a ray from wu to the left until intersecting the midpoint of two consecutive up
steps in P. Suppose that the lower up step is the j* up step in P. We take e the
edge in T that gives rise to the 7™ up step in Q). Let p be the depth of the shallower
end point of e. We label the leaf ¢ with p. In the case that no such intersection
exists, /£ is labeled —1.

We start by a property of Tamari intervals, which is a corollary of Lemma [5.6]

Lemma 5.15. Let [P, Q] be a Tamari interval. For A € {P,Q}, we denote by uJA the jh
up step in A, dj‘ its matching down step, and AUl the segment of A between u;‘ and df,
excluding both ends. For any index i,j such that the i™ up step uX of P is in P, the it
up step UZQ in Q is also in QU.

Proof. We observe that, for any Dyck path A and index j, the segment AU! is a Dyck
path of size (D4(j) — 1)/2. Since Al is formed by consecutive letters in A, the up steps
in AUl have consecutive indices starting from j 4+ 1. Therefore, uf is in AUl if and only if
j+1<i<j+1+ (Da(j)—1)/2. By Lemmal[5.6] Dp(j) < Dq(j). Therefore, u! is in
PUl implies that u? is in QUI. ]

In the following proofs, for a tree T', the sub-tree induced by an edge e is the sub-tree
obtained by cutting e.

Proposition 5.16. For [P, Q] a synchronized interval, the tree T = R([P,Q]) is a deco-
rated tree.

Proof. We need to verify that T" satisfies the three conditions of decorated trees. We first
look at the first condition for the case P = (). In this case, to show that the label of a leaf
¢ attached to a vertex u of depth p is strictly smaller than p, we consider the next newly
visited edge e after £ in the tree traversal. If no such e exists, £ is labeled —1. Let v be
the vertex adjacent to e with smaller depth, and v must be an ancestor of /. In the case



150 CHAPTER 5. MAPS AND GENERALIZED TAMARI INTERVALS

P = @, the label of ¢ is the depth of v minus 1, which must be strictly smaller than p.
The first condition is also satisfied for any other P since going down in the lattice weakly
reduces the labels in R([P, Q]). Therefore, the first condition is satisfied for all R([P, Q]).

For the second condition, let v be an internal node of depth p in T" that is not the root
and e the edge from v to its parent. We need to exhibit one descendant leaf of v that has
a label of value at most p — 2. Suppose that e corresponds to the j*® up step u? in Q.
On the path P, let uf be the ;'™ up step and df be the matching down step. Let df be
the first down step of the consecutive down steps containing df , and u!” be its matching
up step, which is also the 7*" up step of P. It is clear that u/ is between u} and df in P.

Let ¢ be the leaf that gives rise to uZQ . We now show that the label of ¢ is at most p — 2.
Since [P, @] is a synchronized interval, thus also a Tamari interval, by Lemma [5.15, the

ith up step u? of @ must be between the j* up step u? and its matching down step in
(. Furthermore, the edge e gives rise to u]Q, therefore ¢ must be a descendant leaf of e.
Consider the lowest down step df corresponding to £ in P. Let ¢’ be the edge that gives
label to . By the definition of R, the segment of P between the corresponding up step of
¢ and df contains uf , which implies that the edge ¢’ induces a sub-tree containing e (or
the entire tree when the label is —1) according to Lemma . Let w be the endpoint
with a smaller depth of ¢/. The depth of w is thus at most that of v minus 2, therefore
the label of ¢ is at most p — 2. The tree T thus satisfies the second condition.

For the third condition, let ¢ be a leaf in T with label p. We consider the edge e that
gives a label to ¢ in the construction of 7. The edge e links two vertices of depth p and
p+ 1. Therefore, its induced sub-tree 7" is one of the sub-trees of a vertex v of depth p as
in the third condition. The leaf ¢ is in 7" by the construction of 7" and Lemma We
only need to prove that there is no leaf with label strictly less than p before £ in T". Let
{1 be a leaf in T” that comes before £. We suppose that ¢, e and ¢; give rise to the i*®, j®
and " up step in @ respectively. We have j < i; < i. We now look at the corresponding
up steps in P. By construction of the horizontal ray, the lowest point of the consecutive
down steps that comes after the i{® up step in P cannot be lower than that of the i*" step,
or else the ray would be blocked. Therefore, {1 receives a label from an edge in T” or from
e, which give it a label at least p. The third condition is thus satisfied, and we conclude
that T is a decorated tree. O

We now show that the transformations [P, Q] and R are inverse of each other.

Proposition 5.17. Let [P, Q] be a synchronized interval, and T = R([P,Q]). We have
P(T) =P and Q(T) = Q.

Proof. For @ it is clear. We only need to prove the part for P. From Proposition [5.16]
we know that [P(T'), Q(T)] is a synchronized interval. Therefore, given the path @, the
Dyck path P(T) is totally determined by the charge of each leaf in 7. We only need to
show that each leaf in 7" receives the correct amount of charge, which is one less than the
length of the corresponding consecutive down steps in P.

We will first investigate the charging process. Let v be a non-root vertex of depth p in
T, e the edge linking v to its parent, and u! the up step in P that comes from e, which
is also the 7 up step of P. Let £ be the leaf that gives rise to the matching down step d¥’
of uf’ in P. We now show that v charges ¢ by showing that ¢ has a label of value at most
p — 2 and showing that ¢ has the first such label.

To show that the label of ¢ is at most p — 2, we consider the labeling process on £. We
draw a ray to the left from the lowest point of the down steps of ¢, which hits a double
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up step. Suppose that the lower one of the double up step is the j™ up step uf of P.
Let €’ be the edge giving rise to uf , and v’ the endpoint of ¢ with a smaller depth. It is
clear that i # j and ! is in the segment of P between uf and its matching down step.
Therefore, by Lemma [5.15] e must also be in the sub-tree induced by ¢’. Therefore, v’ is
of depth at most p — 2, thus ¢ has a label at most p — 2.

To show that /¢ is the first descendant leaf of v with a label at most p — 2, we consider
a descendant leaf ¢/ of v that comes before £ in the traversal order. Let df be the last
down steps in P that comes from ¢'. Since ¢ comes before ¢, df is strictly between u!
and d¥, and the horizontal ray from the lower point of df lays strictly above that from
uf’ to df. By the labeling process, the double up steps that corresponds to df (thus to
') is in the segment from u! to df’ (both ends included), therefore the label of ¢ is at
least p — 1. We conclude that ¢ is the first leaf in the sub-tree of v that has a label at
most p — 2, and thus v charges /.

To count the number of charges of ¢, we notice that each down step in P that comes
from ¢ corresponds to a charge, except for the highest one. To see this, we only need to
consider their matching up steps. It is clear that highest down step of ¢ in P is matched
with the only up step in P that comes from ¢. For a down step of ¢ that is not the
highest, it is impossible that its matching up step is immediately followed by a down
step, therefore the matching up step is the lower part of a double up step, corresponding
to an internal vertex in 7', and we can see from the argument above that this internal
vertex charges ¢. We thus conclude that ¢ receives the correct number of charges in the
construction of P(7"), which implies P(T") = P. O

We now show that the transformation [P, Q] is an injection.

Proposition 5.18. Let T1,T, be two decorated trees. If P(Ty) = P(T3) and Q(T)) =
Q(TQ), then T1 = TQ.

Proof. Suppose that T} # Ty. Since Q(71) = Q(Tz), the only difference between T; and
T5 must be on labels. Let ¢ be the first leaf in the traversal order that 77 and 75 differ
in label. We suppose that ¢ has a label k; in T} and label ks in T, with k1 > ko > —1.
We have k; > 0. It is clear that all nodes charging ¢ in T} also charge ¢ in T5. Since
P(Ty) = P(T3), we know that ¢ receives the same number of charges in 7} and 75, thus
¢ is also charged by the same set of vertices in T} and T5. Let u be the ancestor of ¢ of
depth k1 + 1 in 77 and T,. The vertex u has a parent since k1 > 0. The existence of
u is guaranteed by the first condition of decorated trees. In T}, by construction, u does
not charge ¢, therefore u should not charge ¢ in 75, either. Therefore, in 75 there must
be a descendant leaf ¢ of u that has a label at most k; and comes before ¢, to prevent u
from charging ¢. By the minimality of ¢, we know that ¢ also has a label ky < &y in T7,
violating the third condition of decorated trees on the parent of u, which is impossible.
Therefore, T7 = T5. O

We now prove that R is a bijection between decorated trees and synchronized intervals.

Theorem 5.19. The transformation R is a bijection from I, to T, for all n = 1, with
[P, Q] its inverse.

Proof. 1t is clear that R preserves the size n. By Proposition and Proposition [5.16]
we have [P, Q](7,.) < Z,, and R(Z,,) = T,. And by Proposition and Proposition [5.18|
both transformations are injective, therefore they are bijections between Z,, and 7,,, and
they are the inverse of each other. O]
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By composing the two bijections T and [P, Q], we obtain a natural bijection from
non-separable planar maps with n+ 1 edges to canopy intervals of size n —1 via decorated
trees with n edges, therefore these two kinds of objects are enumerated by the same
formula. By Tutte’s enumeration result on non-separable planar maps in [I34], we obtain

Theorem (.51

5.4 Discussion

Other than the enumeration of intervals in generalized Tamari lattices, our bijection has
further structural implications on generalized Tamari lattices and non-separable maps.
For instance, it is not difficult to see that some statistics on synchronized intervals are
transferred to statistics on non-separable planar maps by our bijection, which leads to
refined enumeration results. For instance, we can prove that the number of synchronized
intervals of size n where the last descent of its upper path has length £ is the same as that
of non-separable planar maps of n + 1 edges with outer face degree k + 1. Furthermore,
we can relate these structures to some other combinatorial structures that have the same
enumeration formula. In the following, we will give an informal summary of our current
work in this direction, without giving technical details.

Our bijection between non-separable planar maps and synchronized intervals may seem
complicated and unnatural at first sight, and the proofs are indeed technical at places.
But in fact, these bijections come naturally from recursive decompositions of both kinds
of objects. There is a version of parallel decomposition of non-separable planar maps
(see the right-most part of Figure that just removes the innermost non-separable
component. This version of parallel decomposition is isomorphic to the one underlying
Proposition for synchronized intervals. Thus, there exists a “canonical”, recursively
defined bijection between M,, and Z,,. We prove that our bijection coincides with the
canonical bijection, which allows us to tap into the recursive structures of these objects
using a non-recursive bijection.

Using the fact that our bijection is canonical with respect to some recursive decom-
positions, we were able to unveil an unexpected relation between map duality and gen-
eralized Tamari lattices. Recall that Préville-Ratelle and Viennot discovered in [123] an
isomorphism between the generalized Tamari lattice TAM(v) and the dual of TAM(%)
(see Theorem [5.2)). This isomorphism induces an involution on synchronized intervals. In
the lens of our bijection, we obtain the following theorem.

Theorem 5.20. The involution on synchronized intervals induced by the isomorphisms
between TAM(v) and TAM(*0) for all possible v is exactly the duality of non-separable
planar maps under conjugation of our bijection S o R.

The proof of this theorem makes heavy use of recursive decompositions, and relies on
the fact that our bijection is canonical with respect to these decompositions.

We have also tried to find bijections from synchronized intervals and non-separable
planar maps to other combinatorial objects enumerated by the same formula as in Theo-
rem . We have looked at a class of labeled trees called (1, 0)-trees, which are closely
related to non-separable planar maps and were used in [53, [99] under the name “de-
scription trees” for bijective enumeration of non-separable planar maps. It turns out that
S(1,0)-trees are also related to several classes of permutations with forbidden pattern (see
[104, Chapter 2] for a survey on these relations). In [50], an involution h on 3(1,0)-trees
was introduced by Claesson, Kitaev and Steingrimsson. Then it was proved in [105] by
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Kitaev and de Mier using generating function method that the number of fixed points of
the involution h on the set of 5(1,0)-trees with 2n nodes is exactly the same as that of
self-dual (i.e. isomorphic to their own duals) non-separable planar maps with 2n edges.
They asked for a bijective explanation. By relating decorated trees to [3(1,0)-trees using
a bijection, we are able to prove that the involution h on [(1,0)-trees is the same as
map duality on non-separable planar maps under our bijection, which answers positively
the problem proposed by Kitaev and de Mier. The proof again uses the fact that our
bijections are canonical with respect to some recursive decompositions of these objects.

Other than generalizations to other objects, it is also interesting to see what our
bijection gives when restricted to intervals in generalized Tamari lattices with special
canopies. We know that TAM((N E)™) is isomorphic to the usual Tamari lattice, and in
[20], Bernardi and Bonichon gave a bijection between Tamari intervals and planar rooted
triangulations. It is thus natural to look for a similar bijection as a specialization of our
bijection, and eventually a generalization to TAM((N E™)™), which is isomorphic to the m-
Tamari lattice. Such a bijection from intervals of the m-Tamari lattice to a natural class of
planar maps will explain why the enumeration formula of these intervals is similar to those
of planar maps. Furthermore, using trees with blossoms to encode planar maps bijectively
is a common practice, but we rarely see a DFS tree in this interplay. Triangulations may
be a step towards the extension of this new approach.

As a final remark, decorated trees do not seem quite suitable for direct enumeration,
due to their complicated definition. However, the exploration process of non-separable
planar maps to obtain decorated trees can be applied to other classes of maps, which may
give rise to some variants of decorated trees that can be used for map enumeration.
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Chapter 6

Counting graphs with maps

Maps have their root in graph theory, but since gained independence to become an in-
teresting subject on their own ever since. By definition, maps can be seen as graphs
embedded into a certain surface S,, with an extra structure that indicates how edges are
embedded around a vertex, which gives maps a connection to factorizations in the sym-
metric group via rotation systems. Indeed, in previous chapters we have seen exact and
asymptotic enumeration formulas for various kinds of maps, including planar maps, pla-
nar constellations, bipartite maps of higher genus and non-separable planar maps. These
formulas are rather nice in general, and sometimes come with beautiful bijections. In con-
trast, when the information about how exactly edges are embedded are removed, what we
have are graphs embeddable into a certain surface S,. The enumeration of these graphs is
more difficult in general, and exact formulas appear only in very special cases, probably
due to the lack of structure of general graphs. However, this lack of exact formulas is not
considered as a problem in general, since nowadays graph enumeration is mostly moti-
vated by the study of large random graphs, which only needs asymptotic results on graph
enumeration. Comparing the status of maps and graphs in the enumeration aspect, the
following idea becomes natural: is it possible to use already established map enumeration
results to reach graph enumeration results? This is indeed possible, thanks to a theorem
of Robertson and Vitray. There is also some previous effort, such as [44] [TT] on this line
of thought. In this chapter, we will see an example of how map enumeration can help us
to count graphs.

This chapter is based on a submitted paper [66] in collaboration with Mihyun Kang,
Michael MoShammer and Philipp Spriissel. An extended abstract [67] was published in
Proceedings of European Conference on Combinatorics, Graph Theory and Applications
2015 (Eurocomb 2015). In this chapter, we will enumerate asymptotically cubic graphs
strongly embeddable into the surface S, of given genus g via the asymptotic enumeration
results on several kinds of triangulation of higher genera.

6.1 From random graphs to cubic graphs

We will start by a reminder of the type of graphs we study. In this chapter, we will
allow graphs to have loops and/or multiple edges. In other words, we will consider “finite
multigraphs” as mentioned at the beginning of Chapter 1. A graph is called simple if it
has no loop nor multiple edges.

In some sense, the study of random graphs, i.e. natural probability distributions on
graphs, is the study of the generic behavior of a graph obtained from a given random
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procedure of graph construction, sometimes subjected to possible acceptance criteria. In
general, many random graph models focus on vertex-labeled graphs. The first introduction
of random graphs was due to Erdés and Rényi [60], and also independently to Gilbert
[75]. There are two Erdds-Rényi random _graph models, denoted by G(n,p) and G(n, M).
In the G(n,p) model, we consider a graph with n vertices labeled from 1 to n, and for
each pair {i,j} of vertices, we include the edge linking i and j with probability p. In
the G(n, M) model, we also consider a graph with n labeled vertices, but for edges, we
uniformly select a set of M edges among all (;) possibilities. There are also many other
random graph models, some inspired by phenomena in the nature and in human societies
(cf. |2 [25], 49]).

Random graphs exhibit many interesting phenomena. The most interesting ones are
various phase transitions. A phase transition of a certain property P in a probability
model with a parameter is the phenomenon that, when the size of the model tends to
infinity, the probability that the model has property P varies drastically (often from 0
to 1) when the parameter varies around some critical value. For a graph property P,
we say that P is asymptotically almost surely (or simply a.a.s.) satisfied in a random
graph model if the probability that the random graph has the property P tends to 1
when the size of the graph tends to infinity. In [60], Erdés and Rényi mentioned the
first such phase transition result by Erdos and Whitney, which is about the connectivity
of the G(n, M) model: the phase transition of the property that G(n, M) is connected
occurs at M* = inlogn, i.e. for any € > 0, the random graph G(n, (1 — €)M*) is a.a.s.
disconnected, and G(n, (1 + €)M*) is a.a.s. connected. More precise behavior of this
phase transition was further given in [60]. Later, it was found that many interesting
and important graph-theoretic properties and statistics, such as existence of Hamiltonian
cycles and diameter, also have phase transitions in many random graph models. Readers
can find more information about random graphs in [25] and in references therein.

Later, we will be interested in the model G(n, M) with extra condition on embed-
dability. Since the model G(n, M) is a model of random vertex-labeled graph, in the
following we will also enumerate vertex-labeled cubic graphs strongly embeddable into
Sy for a given genus g. There is another classical phase transition on random graphs
called the emergence of the giant component, first proved in [61] for G(n,M). In the
regime M = o(nlogn), the random graph is almost surely disconnected, and we want to
study its connected components. We say that a random graph model G with n vertices has
a giant component if there is a connected component C' in GG containing at least pn ver-
tices with some fixed constant p > 0. The emergence of the giant component for G(n, M)
occurs at M = n/2 + O(n*?). For a more precise description, we take M = n/2 + s
for some s = O(n). If sn™23 — —oo, then G(n, M) a.a.s. has no giant component; if
sn~2/3 — +oo, then G(n, M) a.a.s. has one unique component with Q(s) edges, which is
the largest, and when s is positive and of order n, there is a giant component. A detailed
description of the evolution of G(n, M) around this critical value M = n/2 can be found
in [10T].

The study of random graphs often involves asymptotic enumerations of various classes
of graphs, which can be used to determine whether a subclass of graphs is predominant
in a random graph model with a given parameter. Therefore, we are also interested in
asymptotic enumeration of graphs. In recent years, researchers have been interested in
graphs embeddable into a fixed surface, both in the context of random graphs and of
asymptotic enumeration. A connected graph G is said to be embeddable into S, (resp.
strongly embeddable into S,) if there is a map M of genus ¢’ < g (resp. exactly g) whose
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Figure 6.1: Two maps of the complete graph K, one on the sphere, the other on the torus

underlying graph is G. We notice that a connected graph can be strongly embeddable on
surfaces with different genera. Figure [6.1] shows such an example. A general graph G is
said to be embeddable (resp. strongly embeddable) into S, if all its connected components
G1,Gy, ..., Gy are embeddable (resp. strongly embeddable) into surfaces Sy, Sy,, ..., Sy,
respectively, and the sum of all genera Zle g; is g. A graph G is called planar if it
is embeddable into the sphere Sy, which means that all its connected components are
planar. We can also define the genus of a graph G to be the minimal genus ¢ such that G
is embeddable into S,, while the mazimal genus of G is the maximal genus that satisfies
the same condition.

In [76], Giménez and Noy first gave the asymptotic number of vertex-labeled simple
planar graphs and a more precise result on the asymptotic law of the number of edges
among these simple planar graphs. For 1 < p < 3, they also gave a formula for the
asymptotic number of simple planar graphs with n vertices and un edges. Similar results
for simple graphs embeddable into S, for a fixed genus g were obtained in [44] by Chapuy,
Fusy, Giménez, Mohar and Noy. The asymptotic result without control on the number of
edges was also obtained independently in [IT]. Tt is worth noting that, in the asymptotic
results above, the genus only has an effect on the sub-exponential growth. More precisely,
the number a{9) of simple graphs embeddable into S, for a fixed genus g has the asymptotic
form

aglg) ~ 9pPlamD/2=lnp

We thus observe that the genus g only influences the sub-exponential part ¢(9)p5g—1)/2-1
of the asymptotic formula, but not the more prominent exponential growth 4™ (the part
n! accounts for vertex-labeling). The same phenomenon also occurs when we control the
number of edges.

On the random graph side, the previous work mostly concentrates on planarity. We
know from [61] that, in the sub-critical regime p < 1/2, the random graph G(n,un)
contains a.a.s. no component with more than one cycle, which implies that G(n, un) is
almost surely planar in this regime. On the other hand, we know from [I0T], 113] that,
in the super-critical regime p > 1/2; the random graph G(n,un) almost surely has the
non-planar graph K33 (the complete bipartite graph with 3 vertices on both side) as a
topological minor, therefore is not planar. We thus know that the phase transition of
planarity on G(n, M) occurs at the same place u = 1/2 as the emergence of the giant
component. The fine variation of the probability of G(n, M) being planar was also studied
by Fuczak, Pittel and Wierman in [T13]. It was shown there that, for M = n/2 + cn?/3
with a constant ¢, the probability that G(n, M) is planar converges to a value p(c). The
limit probability p(c) was later determined by Noy, Ravelomanana and Rué in [118] using
an exact enumeration of planar cubic graphs. Here a cubic graph is a graph whose vertices
are all of degree 3. Later we will explain how to use enumeration results on cubic graphs
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to obtain results in random graphs with embeddability constraints.

We can also define random graph models directly on graphs embeddable into a certain
surface S;,. In [102], Kang and Luczak studied the random graph model P(n, M) of
planar graphs, which is simply G(n, M) conditioned on the event that the graph obtained
is planar. That is to say, the model P(n, M) is a uniform distribution over all vertex-
labeled planar graphs with n vertices and M edges. They found that the emergence of
the giant component in P(n, M) also occurs at M = n/2 + O(n*?), the same place and
window as G(n, M). But the planarity in P(n, M) brings itself another phase transition
at M = n + O(n®"), where the growth of the giant component changes. Readers are
referred to [102] of more details on this extra phase transition.

It is now natural to try to obtain results of similar nature for random graphs embed-
dable into surfaces of higher genus. For instance, the method used in [I18] to determine
the limit probability p(c) of G(n, M) being in the class of planar graphs for M = n/2+cn??
can be adapted in principle to a large variety of graph classes, including graphs embed-
dable into S, for any fixed g. The only obstacle for this generalization to higher genera
is that we don’t have an exact enumeration of cubic graphs embeddable into surfaces of
higher genera. We can also extend the study of phase transitions of P(n, M) in [102] to
the random graph model P,(n, M) with a fixed genus g, which is G(n, M) conditioned on
the event of the graph being embeddable into S,. However, this line of thought also needs
the enumeration of cubic graphs embeddable into S, for a fixed g, although an asymptotic
one will suffice in this case. But how cubic graphs enter in all these studies of graphs
embeddable into surfaces?

In fact, results in [I13] 118 [102] all rely on a common set of notions in graph theory
to simplify the study of embeddability. For a graph G, its core core(G) is obtained by
removing all vertices of degree 1 repeatedly until there is no such vertices. The removal
process needs to be repeated because the removal of a vertex of degree 1 may reduce the
degree of other vertices to 1. The kernel ker(G) of a graph G is obtained by “smoothing
out” all vertices of degree 2 in the core of G. More precisely, for a vertex u of degree 2,
let v, w be its adjacent vertices (here v is not necessarily different from w), we “smooth
out” u by deleting v and its adjacent edges, then adding a new edge {v,w} to the graph.
Figure shows the whole procedure to obtain the kernel of a graph. Conversely, all
graphs G with a given kernel G’ = ker(G) can be obtained by first inserting a sequence
of vertices of degree 2 into each edge of G’, in the direction from the vertex with smaller
label to the other, then attaching a tree graph (i.e. acyclic graph) to each vertex. We
notice that, when going back from the kernel to the core of a graph adding back vertices
of degree 2, there may be some symmetry issues to be dealt with. The reason is that, in
the scenario of graphs, vertices are labeled but edges are not ordered around a vertex. In
this case, different sequences of vertex-adding on multiple edges or loops may result in the
same graph. More precisely, if we add back a sequence of vertices with labels ¢, 0o, ... 0}
to a loop in the kernel, we will obtain the same core as adding back the sequence with
labels ly, lx_1,...,¢;. Similarly, for multiple edges in the kernel, we can exchange the
sequence of vertices we will add back while always obtaining the same core. Therefore,
we need a compensation factor for multiple edges and loops. For cubic graphs, we can
only have double edges or triple edges as multiple edges. Each set of double edges has a
compensation factor 1/2; while a set of triple edges has a compensation factor 1/6. These
compensation factors accounts for possible permutations of sequences of degree 2 vertices
we will add back to obtain the core. On the other hand, a loop has a compensation factor
1/2, accounting for the fact that we can reverse the sequence of degree 2 vertices to add
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Figure 6.2: An example of a graph, its core and its kernel

back while obtaining the same core. Therefore, we are in fact interested in weighted cubic
graphs. But these factors are easy to deal with, either by a change of variables of by
adding some coefficients in a recursive decomposition. Later, we will simply talk about
the enumeration of cubic graphs, without stating the fact that they are weighted. Details
will be given in the proofs.

We observe that, if G is embeddable into S,, then ker(G) is also embeddable into S,
and wvice versa. Therefore, to study graphs embeddable into Sy, it suffices to study all
possible kernels embeddable into the same surface. It is immediate from the definition
that all vertices in ker(G) (if any) have degree at least 3. When the graph G has very few
edges, we may expect that its kernel ker(G) would not have any vertex of high degree. For
graphs with n vertices and M = n/2 + O(n*?) edges, which is also the critical window of
the emergence of the giant component in G(n, M), the intuition above can be quantified
by the following result from [I13, Theorem 4(I)].

Lemma 6.1. For M = n/2 + O(n*?), the random graph G(n, M) a.a.s has a kernel that
is a cubic graph.

Therefore, in this critical window, by studying cubic graphs that are embeddable into
Sy, we can study the embeddability of random graphs. Furthermore, when kernels do not
deviate too much from being cubic, we can still bound their number using cubic graphs
(cf. [102, Lemma 3]). This technique was used in [102] to study the random planar graph
model P(n, M) for M = n + O(n*®), where the new phase transition occurs, and it can
potentially be extended to the random graph model P, (n, M) for graphs embeddable into
Sy. We can thus say that the study of random graphs with embeddability restriction
with few edges relies on the enumeration of cubic graphs embeddable into S, with a given
genus g. This is our motivation to study cubic graphs embeddable on S, .

6.2 Using triangulations to count cubic graphs

But how do we count cubic graphs embeddable on S, for a given genus g7 This is a tricky
problem. Although we know how to count various kinds of triangulations (c.f. [72,[74,[73]),
which are duals of maps with cubic graphs as underlying graphs, we cannot directly
transfer these enumeration results to cubic graphs. The reason is that a cubic graph can
correspond to a very large number of embeddings. For instance, we can construct gadgets
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Figure 6.3: A gadget with 2 local embeddings, and an unrooted map with its underlying
graph constructed with this gadget

Figure 6.4: Non-contractible circles on the torus

(i.e. fragments of graphs) that have two different local embeddings, such as the one on the
left side of Figure[6.3] Then using these gadgets we can construct graphs corresponding to
a large number (at least exponential in the number of vertices) of unrooted maps, because
the embedding choice of each gadget is independent. The right side of Figure [6.3| shows
an example of an unrooted map with such a graph as its underlying graph. Therefore, if
we want to transfer map enumeration results to graphs embeddable into a surface with
fixed genus, we need to find a sub-class of these graphs within which we can somehow
control the number of embeddings of graphs.

From now on, we will consider a map alongside with the surface into which it embeds,
because in the following we will perform topological surgeries on surfaces to obtain new
maps. This viewpoint is also convenient for us to introduce notions in topological graph
theory that are necessary for our results. Let M be an unrooted map on S, with underlying
graph G. We identify vertices, edges and faces of M respectively with the corresponding
points, curves and regions on the surface S,. For edges, we include their adjacent vertices
on the corresponding curve to make them a closed set. The same applies to faces, that
is, we include adjacent vertices and edges of a face in its corresponding region to make it
closed. A non-contractible circle on Sy is a closed curve on S, that cannot be contracted
to a point. The facewidth of M, denoted by fw (M), is the minimal number of faces whose
union contains a non-contractible circle. Figure shows a portion of a map on a torus,
and we can see that the map has facewidth at most 3, since the union of the 3 faces on the
left contains a non-contractible circle. Similarly, we define the edgewidth of M, denoted by
ew(M), as the minimal number of edges whose union contains a non-contractible circle,
which is equivalent to the minimal length of cycles in M that are non-contractible. Always
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Figure 6.5: Part of a map on a torus, containing two sets of faces whose unions contain
non-contractible circles, and a non-contractible cycle

taking the example in Figure [6.5] the map has edgewidth at most 4, since on the right
there is a non-contractible cycle of edges of length 4. When M is planar, we take the
convention that fw(M) = ew(M) = oc0. We can easily extend the definitions of facewidth
and edgewidth to rooted maps. For a graph G that is embeddable into S,;, we define its
facewidth on S, fw,(G) to be the maximal facewidth of all maps of genus ¢ with G as
their underlying graph.

We now follow the approach in [44) [IT], which relies on the notion of facewidth and a
series of theorems in topological graph theory. Our starting point is the following theorem
by Robertson and Vitray [125] which proposes a class of graphs with a unique cellular
embedding (up to orientation).

Theorem 6.2. For g > 0 and G a 3-connected graph embeddable into S,, if fwy(G) =
2g + 3, then there is a unique unrooted vertex-labeled map M (up to orientation) as
embedding of G on S,. Equivalently, in this case if there are two unrooted maps My, My on
Sy both with G as underlying graph, then there is a (not necessarily orientation-preserving)
homeomorphism that sends My to Ms.

Many classes of maps have large facewidth. For instance, it was proved in that
when n tends to infinity, almost all rooted maps of size n have facewidth at least log(n),
which is larger than any constant. Therefore, for asymptotic enumeration of maps, we can
often safely drop the facewidth constraint. It is thus reasonable to expect that the same
holds for graphs, that is, for any fixed constant ¢, when the size tends to infinity, almost
all graphs will also have facewidth larger than c¢. Indeed, this fact will be proved later for
the class of graphs that we study. Therefore, with some extra technical analysis, we can
transfer asymptotic enumeration results of 3-connected maps to 3-connected graphs. By
Theorem [6.2] we can thus obtain asymptotic enumeration results of the “hard” case of
graphs from the “easy” case of maps, at least in the 3-connected case.

On the graph side, once the asymptotic number of 3-connected graphs is known, we
can obtain the asymptotic enumeration of connected graphs and general graphs by a
decomposition along connectivity. The definitions of notions related to connectivity can
be found in Chapter 2.1. It is folklore that a general graph can be seen as a set of
connected graphs. For a connected graph G, we can split all its cut vertices to obtain
a sequence of sub-graphs that are all 2-connected. This decomposition of G into 2-
connected graphs is unique. The sub-graphs obtained in the decomposition are called the
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Figure 6.6: Decomposition of a connected graph into 2-connected components

BB

Figure 6.7: Decomposition of a 2-connected graph into components

2-connected_components of GG, and they form a bipartite tree structure if we regard each
cut vertex and each component as vertex, and their incidences as edges. Figure shows
an example of this decomposition. Similarly, we can decompose a 2-connected graph by its
pairs of separating vertices into a tree structure, with three types of components: cycles,
multiple edges and 3-connected graphs with at least 4 vertices (also called 3-connected
components). Figure shows an example of this decomposition. These decompositions
are due to Tutte [I35], and [77] is a survey on their applications to graph enumeration.

Again, if we add a facewidth restriction, we can have a better control on these decom-
positions. The following result was proved in [125].

Theorem 6.3. Let g > 0 and let M be a map on S, with underlying graph G.

1. If G is 2-connected, then M has facewidth fw(M) = k = 3 if and only if M has
a unique 3-connected component embedded on S, with facewidth k and all other
3-connected components of M are planar.

2. We have ftw(M) = k = 2 if and only if M has a unique 2-connected component
embedded on S, with facewidth k and all other 2-connected components of M are
planar.

We can also formulate the theorem above in terms of graphs as in the following corol-
lary.

Corollary 6.4. Let g > 0 and let G be a graph embeddable on S,.

1. If G is 2-connected and fw,(G) = 3, then G has a unique 3-connected component
that is non-planar and embeddable on S, with facewidth fw,(G), and all other 3-
connected components are planar.
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2. If twy(G) = 2, then G has a unique 2-connected component that is non-planar and
embeddable on S, with facewidth tw,(G), and all other 2-connected components are
planar.

Using this result, we can express the generating function of connected graphs using
that of 2-connected graphs (with a suitable variable substitution that will be explained
later), which in turns can be expressed using that of 3-connected graphs (again with
a suitable variable substitution), whose asymptotic behavior is supposed to be known
from map enumeration results. We hope to obtain in this way the asymptotic number of
connected graphs using this decomposition along connectivity. Again, with some technical
but easy analysis, we can drop the facewidth constraint in the asymptotic enumeration.

What we have discussed above is the general procedure using the decomposition along
connectivity discovered by Tutte to obtain asymptotic enumeration results of connected
graphs from that of maps (c¢f. [76, 44] [I1]). Its application also needs some careful
adaptation to the class of graphs we work on, which is the class of cubic graphs in our
case. This adaptation is not trivial at all and requires a genuine effort.

But there is a last missing puzzle piece. We know that 3-connected cubic graphs
have unique embeddings, which are 3-connected cubic maps, but we don’t know their
asymptotic behavior! Although triangulations on a general surface S,, which are duals
of cubic maps on the same surface, have been studied quite thoroughly (cf. [72, 74, [73]),
none of the variants correspond to the dual of 3-connected cubic maps, which allow loops
and double edges in some cases but not all (the exact condition will be given later). To
count these triangulations, we will perform surgeries on them to “cut out” the loops and
double edges that we don’t want, in order to deduce their asymptotic enumeration formula
from those of other types of triangulations that are already known. The idea of using
surgeries to tailor graph embeddings for enumeration problems is classical. For instance,
it has been used in [12} [I4] to obtain asymptotic enumeration results on maps with small
facewidth or edgewidth, which lead to asymptotic properties of facewidth and edgewidth
of maps.

To summarize our strategy, Theorem of Robertson and Vitray relates cubic graphs
and cubic maps that are 3-connected. On the map side, we consider the dual triangu-
lations, whose asymptotic enumeration is obtained using surgeries, and then transferred
to 3-connected cubic graphs. On the graph side, we use the decomposition along connec-
tivity to transfer the asymptotic enumeration of 3-connected cubic graphs to 2-connected
and then to connected cubic graphs, which is our goal. Figure illustrates our strategy.

Using this strategy, we obtain the following asymptotic enumeration result of weighted
cubic graphs. We recall that, for the sake of enumeration of random graphs via their ker-
nels, we are interested in cubic graphs weighted with compensation factors of 1/2 per loop
and double edge and 1/6 per triple edge. We denote by w,(n) the total weight of vertex-
labeled cubic graphs strongly embeddable into S, with 2n vertices under the compensation
factors. We should note that the cubic graphs here are not necessarily connected. For
a cubic graph GG with k connected component, GG is said to be strongly embeddable into
S, if its connected components are strongly embeddable into S,,,S,,, ... ,S,, respectively
such that Zle gi =g.

Theorem 6.5. For g = 0, the total weight wy(n) of vertex-labeled cubic graphs with n
vertices that are strongly embeddable into S, with compensation factors has the following
asymptotic expansion:

wy(n) = (1+O0(n™4)) en®20=D=12n2p)1.
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Robertson-Vitray, duality
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Figure 6.8: Our strategy to enumerate cubic graphs using triangulations

Here, v, = 793454712 ~ 3.606 and eq Us a constant that only depends on the genus g.

It is important to note that Theorem is about graphs that are strongly embeddable
into Sy, which is different from the notion of graphs embeddable into S,, which allows
embeddings that are not maps, i.e. their faces are not necessarily topological disks.
Although the two notions of embeddability are different, the same asymptotic formula
holds for both notions. It is because when the size tends to infinity, the number of cubic
graphs strongly embeddable into Sy is negligible comparing to those strongly embeddable
into S, for any ¢’ < g, according to Theorem [6.5] Therefore, the number of graphs
embeddable into S, has the same asymptotically dominant term as that of graphs strongly
embeddable into S,.

6.3 Map surgeries

As we have mentioned previously, we are going to enumerate embeddings of 3-connected
cubic graphs on S, by enumerating their duals, which form some class of triangulations
of genus ¢g that we will precise later. Before proceeding to the enumeration of these
triangulations, we need some tools. For enumeration, we need to consider maps alongside
with the surface into which they embeds. In this viewpoint, we can perform a topological
surgery (or simply a surgery) on the surface into which a map embeds in order to obtain
a new map. Surgery is a heavily used tool in topology and geometry, and it has been
introduced in the enumeration of maps long ago in [12, [14]. Although it is possible to
formally define surgeries in the language of topology, I choose to define the surgeries we
will use later in an informal fashion, in the hope of making the definitions more accessible.

During surgeries, we may temporarily encounter maps with boundaries, which are
maps with distinguished faces called boundaries. Furthermore, there is an order over
all boundaries, and the root corner is not contained in any boundary. A boundary f is
called simple if each of its adjacent edges also borders a face or a boundary other than
f. A map with simple boundaries is a map with boundaries which are all simple. For a
map M of genus g with simple boundaries fi, fo,..., fr, we consider it to be embedded
into a surface with holes S, obtained by excluding the interior of all f;’s from the surface
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Figure 6.9: A map with two boundaries on a torus

Sy on which M embeds. The genus of S is defined to be the same as S,. Each interior
of f; is called a hole. Figure shows a map with simple boundaries, and the surface
with holes into which it embeds. Maps with boundaries can be seen as a generalization of
maps. Since we will only encounter simple boundaries later, we assume that all bound-
aries are simple hereinafter. A triangulation with simple boundaries is thus a map with
simple boundaries such that all faces (excluding boundaries) are of degree 3.

We will now describe some surgeries on surfaces with (or without) holes, on which
maps with (or without) simple boundaries live. A simple cycle of length k in a map M
is a sequence (v, €1, s, €, ..., U, €) With vertices v;’s and edges e;’s such that all v;’s
are distinct, and e; is an edge adjacent to v; and v;,1, with v5,; = v;. For convenience,
we often omit the vertices and only write (eq, e, ..., ex) for a simple cycle. Let M be a
map with simple boundaries fi, ..., fi embedded into a surface S = S, — (f1,. .., fi) with
holes, and C' = (ey, ..., ex) be a simple cycle in M. For the cycle C, we fix an orientation,
with which we can distinguish the left and the right side of faces and edges adjacent to
elements in C. The surgery of cutting M along C' consists of locally splitting the surface
S along C' by duplicating all vertices and edges in C' and making each original side of C'
adjacent to one copy of C'. This cutting surgeries creates two holes, each delimited by
a copy of C. Figure [6.10] shows two examples of the effect of cutting along a cycle on a
surface with holes given by the map with boundaries in Figure[6.9] We notice that in the
example on the left, one of the new holes borders an existing hole by two edges after the
cutting, and these edges are still considered a part of the surface with holes we obtain.
After a cutting, there are two cases: either S remains connected (left of Figure , or
it is cut into two surfaces with holes (right of Figure , each containing a map with
boundaries. In both cases, we have two new holes in the resulting surfaces, both of the
same size and with disjoint vertices and edges. In the first case, the cycle C is called
non-separating, while in the second case, C' is called separating. In the separating case,
we should note that only one of the components contains the root, and later when we
enumerate maps using this surgery, we will specify how we root the unrooted component.
Concerning the genus of surfaces we obtain, suppose that we cut a surface of genus g along
a simple cycle. In the non-separating case, the surface we obtain is of genus g — 1. In the
separating case, the two surfaces we obtain have total genus g. The variation of genus
can be seen using Euler’s relation. Let us take the non-separating case as an example.
After cutting, we can fill the holes for them to become faces, which gives two extra faces,
while we have the same number of new vertices and faces coming from the duplication in
cutting. Therefore, by Euler’s relation v — e + f = 2 — 2g, we must decrease by 1 in the
genus. The analysis for the non-separable case is similar.
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Figure 6.10: Two examples of cutting along a cycle
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Figure 6.11: Cutting an edge and zipping a double edge on a map with simple boundaries

The inverse of the cutting surgery is called gluing, and it comes in two types, each
corresponding to one case in the cutting surgery. Let M be a map with simple boundaries
embedded into a surface S, with two boundaries fi, fo of the same degree. Let C,Cy be
the simple cycles that enclose f; and f5 respectively. In the case where C; and Cy are
disjoint, the surgery of gluing C) and C5 on M consists of identifying vertices and edges of
C1 and C5 with respect to the orientation of S. For C and C5 of length &, there are k& ways
to glue them. With the condition that C and Cy are disjoint, we avoid pathological cases
and make this gluing surgery the inverse of the cutting surgery in the non-separating case.
For the inverse of the cutting surgery in the separating case, we consider two maps with
simple boundaries M, M’ embedded into two surfaces S,S’ respectively, and we suppose
that M has a boundary f that is of the same degree as another boundary f’ of M’. Let
C, C" be the simple cycles that enclose f and f’ respectively. We can thus similarly define
the surgery of gluing M _and M’ by C and C’, and we see that this surgery is the inverse
of the separating case of the cutting surgery. We should also note that there is also a
rooting issue for these surgeries, which will be clarified later. For examples, we can look
at Figure [6.10] in another way around: by gluing the distinguished cycles, we can obtain
the map with simple boundaries in Figure [6.9]

We now introduce two last surgeries, which only apply to boundaries formed by double
edges. In the following, we refer to a pair of edges that share both distinct endpoints as
a single entity called a double edge. Let M be a map with simple boundaries, where one
of them is formed by a double edge d = {ey, e5}. The surgery of zipping the double edge d
on M consists of identifying e; and e, with respect to their extremities and discard the
boundary enclosed by ey, es. In the reverse direction, given a map with simple boundaries
M and one of its edges e that is not a loop, the surgery of cutting open the edge e on
M consists of duplicating e and add a boundary enclosed by the resulting double edge.
Figure [6.11] shows an example of these two surgeries.
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Figure 6.12: Examples of planar separating, non-planar separating and non-separating
double edges (from left to right) on Sy

G =

Figure 6.13: Example of the special case in cutting along two loops

In the following, for the sake of simplicity, when talking about surgeries on maps
with simple boundaries, we will stop mentioning the fact that these surgeries are in fact
performed on the surface with holes on which maps live. In other words, we will assume
that each map comes with the surface into which it embeds. We also notice that all these
surgeries preserve faces in maps (boundaries excluded). Since we will be performing these
surgeries on triangulations, any map without holes we obtain will be a triangulation.

As a final remark, we can use surgeries to classify double edges and loops in a map.
Let C' = (e1,e3) be a double edge on a map M. We know that C' is also a simple cycle.
We now cut along C' on M. If the surgery does not disconnect M, then the double
edge C' is called non-separating. If the surgery disconnects M into two maps with one of
them planar, then C is called planar separating (or simply planar), otherwise C' is called
non-planar separating. Figure|6.12|shows examples of all three cases. Similarly, for a loop
ey in a map M, since e, is a simple cycle, we say that e, is separating if cutting along it
disconnects the map, and otherwise non-separating. We will also consider cutting along a
pair of loops. For a pair of loops ey, e5 in M, we say that they are a separating pair if none
of them is separating but cutting along both of them disconnects the map. We notice
that the cutting surgeries along two different loops commute, except in the case where the
two loops share the same vertex, and when cutting one of the loops, the endpoints of the
other locate on different duplication of the vertex. Figure [6.13] shows an example of this
case. But in this exceptional case, after the first surgery, the other loop is transformed
into an edge € with its endpoints on the two boundaries of length 1 (see Figure [6.13]
middle), and by cutting along ¢’ we merge the two boundaries, which does not alter the
genus (see Figure |6.13] right). Therefore, when considering separating pairs of loops, we
do not need to consider this situation, and we can assume that the cutting surgeries of
the two loops are performed simultaneously.
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A

(a) (b)

Figure 6.14: Possible configurations of a vertex separator of size 2 in a cubic graph,
alongside with a possible edge separator of size 2 in each case

6.4 Counting 3-connected cubic maps with surgeries

We begin the implementation of our plan in Figure by the enumeration of 3-connected
cubic maps, which corresponds to the right-hand side of Figure [6.§f We know that the
dual of a cubic map is a triangulation. Since much is known about various triangulations,
such as in [71) [72] [74], it may be easier to base our enumeration effort on these known
results. Therefore, instead of directly counting 3-connected cubic maps, we count their
duals, which are triangulations with constraints described in the following proposition.

Proposition 6.6. Let M be a cubic map on S, with at least 4 vertices and M* its
dual triangulation. Then M is 3-connected if and only if M* is a triangulation without
separating loop, separating double edge nor separating pair of loops.

Proof. We first prove that, for cubic graphs GG with at least 4 vertices, 3-connectivity and
3-edge-connectivity coincide. Suppose that we can disconnect G by deleting two edges
e1, €. In this case, by choosing one endpoint of each of e; and ey, we get two vertices
whose deletion will also disconnect (G, and since G has at least 4 vertices, each component
after deletion is not trivial. Conversely, suppose that we can disconnect G by deleting two
vertices u, v. Since G is cubic, u and v are both of degree 3. As GG has at least 4 vertices,
there are at most 2 edges between v and v. We now divide our analysis into cases with
different number of edges between u and v. These cases are illustrated in Figure [6.14]

If there are two edges between u and v (Figure [6.14)(a)), then by deleting these two
edges, we disconnect G.

If there is only one edge between u and v, then there are 4 edges that link components
to u and v. If there is a component C' that only links to one of the vertices u and v, for
instance u, there are at most 2 edges from C' to u, and their deletion will disconnect the
graph. We now suppose that each component are linked to both u and v at the same
time. Since there are at least 2 components after deletion of u, v, we know that there are
exactly 2 components, each connected to v and v as in Figure (b) We pick one of
the components, the deletion of its two edges linking to u and v will disconnect G.

The last case is that there is no edge between u and v. If there are 3 components
after deletion of u and v (Figure [6.14|c)), then we can apply the same reasoning as in
the previous case. Otherwise, there are only two components, and among the 3 edges
adjacent to u, there is one connected to a different component from the other two (see
Figure [6.14[d,e)). By deleting this edge and the edge in the same situation for v, we
disconnect G.

Therefore, we have proved that G has a 2-vertex separator if and only if it has a 2-edge
separator, which means that 3-connectivity and 3-edge connectivity coincide. We will use
3-edge-connectivity hereinafter.
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We now define the dual graph G*(M;) of a map with boundaries M. We first trans-
form Mj into a map without boundary M; by regarding its boundaries as normal faces.
Then we take the underlying graph G of the dual M; of M;, and delete from G7 the
dual vertices and edges corresponding to faces in M; that are boundaries in M. We thus
obtain G*(M,).

Let T be a triangulation with boundaries and e one of its edges. By cutting along e, we
obtain a triangulation with boundaries 7’. We observe that G*(1”) can be obtained from
G*(T') by deleting the dual edge that corresponds to e. Indeed, suppose that e borders
two faces fi, fo in T. After cutting along e, we have a new boundary b that borders both
f1 and fy by an edge, while f; and f; now lose the common border e. This change is
reflected in the dual graph as the deletion of the edge corresponding to e that connects
the dual vertices of f; and fs, since the dual vertex of b and its adjacent edges are deleted.
Conversely, the deletion of an edge e in G*(T') also corresponds to cutting along the dual
edge of e in T'.

Now, for a cubic map M, let G be its underlying graph and M* its dual triangulation.
We suppose that M is not 3-edge-connected, which means that there are two edges ey, ey
in G whose deletion will disconnect the graph. Therefore, their dual edges e, e’ in M,
cutting along them will disconnect the surface. There are several cases for e] and ej,
either they form a double edge, or they are two simple edges, or at least one of them is
a loop. If they form a double edge, by definition, they form a separating double edge.
It is impossible for both of them to be simple edges, because in this case cutting along
both of them will never disconnects the surface. If only one of them is a loop, then this
loop must be separating, because cutting along the other, which is a simple edge, cannot
disconnect the surface. If both of them are loops, either one of them is separating, in
which case we have a separating loop; or both of them are not separating, but together
they form a separating pair of loops. In conclusion, one of the following structures must
exists: separating loop, separating double edge and separating pair of loops.

O

Let M, be the class of triangulations on S, without separating loops, separating double
edges nor separating pair of loops. We note that these triangulations are exactly duals of
3-connected cubic maps with at least 4 vertices or a triangulation with exactly 3 edges,
as indicated in Proposition and we want to obtain their asymptotic enumeration. To
this end, we need some other types of triangulations. Let A, be the class of triangulations
on S, without loops nor separating double edges, R, be the class of triangulations on S,
without loops or planar double edges, 7, be the class of triangulations on S, without
loops, and &, be the generating function of simple triangulations on S, i.e. without
loop nor double edges. The size statistic of these classes of triangulations is the number
of edges. We denote their OGFs by M,(t), N,(t), Ry(t), T,(t) and S,(t) respectively, all
with ¢ marking the number of edges. The empty triangulation is not counted in any class
here. Table summarizes the characterization of these triangulations. We notice that
Sy N, R, < T, and N, € M,.

In the following, we will adopt the following convention of notation: we will use
calligraphic letters such as M, to denote classes of maps, and they always come with at
least the genus parameter g; their corresponding generating functions will be denoted by
letters in italic such as M (t), also always coming with at least the genus ¢ as subscript,
but also the variable ¢; for an element in a class of maps, we will also use normal letters,
for instance M, potentially with a superscript and a subscript, but never the genus g in
the subscript, and we never append the variable ¢.
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double edges

loops non-separating planar separating mnon-planar separating
M, Some case% Yes No No
N, No Yes No No
R, No Yes No Yes
T, No Yes Yes Yes
Sy No No No No

2All cases except separating loops and separating pairs of loops.

Table 6.1: Comparison of different classes of triangulations

We already have asymptotic enumeration results on two classes 7, and S, first given
in [72] and [74]. The following proposition presents these results in the form of dominant
singularities of the corresponding OGFs. We recall that for a power series f(¢) with
positive coefficients, we write f(t) = g(¢t) + O(h(t)) if there are two A-analytic power
series f_(t) and f,(t) with non-negative coefficients and the same asymptotic behavior

g(t) + O(h(T)) such that f_(t) < f(t) < f4(t).
Proposition 6.7. The OGF Sy(t) has the following rational parametrization:
So(t) = s(1 —2s), where t* = s(1 — s)°.

Therefore, Sy is A-analytic, with the following expansion near the dominant singularity
ps = 2—8/3 .3

1 9 _ 3 _ _
So(t) = 3 Tﬁ(l —ps't) + CHA ps' )2+ 0 ((1-p5't)?). (6.1)

For g = 1, the OGF Sy(t) has the same dominant singularity ps as So(t). The expansion
of Sy(t) near t = pg is given by

Sy(t) = ¢y(1— pst) 20 V271 (14 0 ((1 - pg't))) . (6.2)

Here, ¢, = 3tgl“(5(1—g)/2)5g(g_l)/2, where t, is the universal coefficient in [7] that depends
only on g, and Bs = (4/3)6'/°.

Proposition 6.8. The OGF Ty(t) has the following rational parametrization:

1—-4
To(t) = m, where t* = s(1 — 25)°.
Therefore, Ty is A-analytic, with the following expansion near the dominant singularity
pr =213 3:

Ty(t) = 5 S(L— 1) + 30— g0 + O (1~ 70 (6.3)
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For g = 1, the OGF T,(t) has the same dominant singularity pr as Ty(t). The expansion
of T,(t) near t = pr is given by

Ty(t) = (1 — p7't) PO V21 1+ 0 (1 - pr't)'™)). (6.4)

Here, ¢, = 3t,I'(5(1 — g) — 2)6;(9_1)/2, where tgy is the same universal coefficient as in
Pmposition and Br = (2/3)6Y°.

The parametrization of Sy and 7 comes directly from [74] and [71] respectively, from
which we can deduce the expansion in and (6.3). The dominant terms in and
(6.4) were already given in [72] and [74]. The error terms can be obtained by an induction
on genus on the functional equations for S, and 7} given in the same papers. Details are
omitted here, and interested readers are referred to Appendix A of [66].

We note that the number of edges of a triangulation must be divisible by 3, since every
face is of degree 3 and each edge is counted twice in face degrees. Therefore, all the OGFs
of triangulations exhibit coefficient periodicity, and there are other singularities that have
the same modulus as the dominant one. However, by a change of variable u = 3, we can
see that these companion singularities does not affect the asymptotic behavior, and we
can focus our analysis on the dominant one. In this chapter, we will still keep the number
of edges as the size parameter, as in other chapters.

Although the coefficients ¢, and ¢ seem complicated, they are in fact closely related.
We observe that Sg = 281, therefore we have

cg =220V (6.5)

We also notice that ps = (9/8)pr.

Our aim now is to relate the class M, to S, using surgeries in order to obtain the
asymptotic enumeration of M,. More precisely, we will first prove that R,(t) has the
same asymptotic behavior as Sg(t) (Proposition [6.12)). This is done by establishing with
surgeries a relation between R,(t) and 7,(t), which involves the functional composition
R,(t(1 + Tp(t))). By analyzing carefully this functional composition, we are able to de-
termine the dominant singularity and the asymptotic behavior of R,(t), which coincide
with those of S;(t). We then prove that N, (t) has the same asymptotic behavior as R,(t)
(Proposition , again using surgeries. The idea of the proof is that, since the only
difference between R, and N, is that non-planar separating double edges are allowed in
Ry, by performing cutting surgeries on triangulations in R, and by an induction on the
genus g, we show that triangulations containing at least a non-planar separating double
edge form a negligible part in R,. Finally, we prove that M (¢) has the same asymptotic
behavior as N,(t) (Proposition , this time by performing surgeries on loops on trian-
gulations in M. In [66], this procedure is shortened to passing directly from R, to M,
by performing the two sets of surgeries at once. But here I choose to split into more steps
for a potentially more accessible proof.

This chain of congruence of asymptotic behavior leads to our main result in this
section, which is also the main result on the map side of our plan (see the right-hand side

of Figure .

Proposition 6.9. The OGFs M,(t) and S,(t) have the same dominant singularity ps.
Furthermore, we have My(t) = So(t), and for g = 1, the OGF My(t) has the same
asymptotic behavior as Sy(t) near the dominant singularity, namely

M,(t) = ¢,(1 — ps't) 20D (14 0 (1 - pg't)/Y)) .
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We now present a topological surgery acting on double edges on which we will rely
heavily later.

Lemma 6.10. Let T' be a triangulation on S, with n edges, and D = {e1,es} a double
edge. Then by cutting along D and zipping the two copies of D duplicated in the cutting
on both sides, the result must fall in one of the following cases:

o A triangulation T" on S,_1 with n edges and two marked edges that share no common
vertex (see upper part of Figure ;

o Two triangulations Ty on S, and Ty on Sy, with n edges in total, satisfying g =
g1 + g2, where Ty contains the original root corner and an extra marked edge, and
Ty is a rooted triangulation without marked edge (see lower part of Figure .

In the first case, it is a 2-to-1 correspondence. In the second case, it is a 2-to-2 corre-
spondence.

Proof. 1t is clear that the result will be triangulations without boundaries, since both
surgeries we perform do not affect faces, and both holes created in the cutting are closed by
zipping. When the double edge is non-separating, we fall in the first case. Otherwise, we
fall in the second case. We now deal with roots and marked edges of these triangulations.
In the first case, we simply keep the root corner and mark the two edges coming from
zipping the holes. In the second case, we take the component containing the root as T,
and the other as T5. In 77, we simply mark the edge coming from zipping the hole. In
T,, since there is no root, we root at the edge coming from zipping the hole, with two
possible orientations.

We now look at the other direction. In the first case, we can simply cut open the two
marked edges, then glue the two double edges we obtained by cutting. This is always
possible since the marked edges share no common vertex. There are two ways of gluing,
depending on which pairs of vertices we identify. In the second case, we cut open the
marked edge on 77 and the root edge on T, then glue the two double edges we obtained.
Again, there are two ways of gluing. Therefore, we have a 2-to-1 correspondence in the
first case, and a 2-to-2 correspondence in the second. O

We now consider the implication of Lemma[6.10]in map enumeration using generation
functions. For the non-separating case, we notice that the two marked edges on the
triangulation 7" obtained after the surgery must not share any common vertex. This
extra constraint is difficult to be expressed in terms of generating functions, therefore it
seems to be difficult to apply the non-separating case to obtain equalities of generating
functions. However, if we remove this constraint of forbidden common vertex, 1" will
simply be a triangulation with two marked edges. In terms of generating functions, two
marked edges can be translated to partial differentiations by the size variable ¢, which
are simple to manipulate. However, in exchange of simplicity, we no longer have an exact
correspondence. Since we removed a constraint, what we have is now an upper bound of
the number (or coefficient-wise dominance for generating functions) of triangulations of
a given genus in the non-separating case of Lemma [6.10] Therefore, although we cannot
use the non-separating case of Lemma [6.10to obtain an equality of OGFs, we can still use
it to obtain a coefficient-wise domination of OGFs. The separating case of Lemme [6.10]
however, can be translated directly into an equality of OGFs without any further problem.

In the surgery presented in Lemma [6.10] the sub-case of a planar double edge in the
separating case is particularly important. In other cases, we obtain one or two maps of
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P
Case 1
P
Case 2

Figure 6.15: Two cases of cutting along and zipping a double edge

strictly lower genus. But when the pair of double edges is planar, we obtain a planar
map and a smaller map with the same genus. We now present a property of these planar
double edges. Let T be a triangulation with boundaries on S, with ¢ > 0, and d;, ds two
planar double edges of T. We say that d; is contained in dy on T (denoted by d; <t ds)
if the disk we obtain by cutting along dy, when not yet cut from 7', contains d;. See
Figure for examples of the relation <7. We have the following lemma on properties
of the relation <7, which was already known in [I4] in the context of quadrangulations.

Lemma 6.11. Let T be a triangulation on Sy with g > 0, and D the set of planar double
edges in T. The relation <r defined on D is a partial order on D.

Furthermore, for d € D, the suborder (D', <7), with D" the set of elements greater
than d, has a greatest element and a smallest element (namely d).

Proof. Let di,ds be two double edges, and P;, P, be the set of faces in the planar com-
ponent we obtain by cutting along d; and ds respectively. Since T is of genus g > 0,
there is a unique assignment from planar double edges and their corresponding planar
component. We have d; <r d, if and only if P, € P,, since T is not planar. Therefore,
since the set inclusion order is a partial order, we conclude that < is also a partial order
over D.

For the second part, suppose that D’ has at least two maximal elements, namely d;
and dy. We define P; and P, as before. Since P; and P, contain the same double edge
d, they have a non-empty intersection. Since both d; and ds are maximal elements, by
Jordan curve theorem they must share their vertices. In this case, by taking the union of
P, and P,, we obtain a larger planar disk with boundary of length 2, therefore a double
edge that is larger than both d; and dy, which is a contradiction. O

6.4.1 The asymptotic behavior of R,(t)

We start by relating 7, and R, using surgeries. We observe that the only difference
between 7, and R, is that planar double edges are allowed in the former but not in the
latter. Let T" be a triangulation in 7,, we want to cut and zip the maximal planar double
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dy dy dy ds dg
ds3 d7
de = ‘
dg
d67 d7 -7

Figure 6.16: Planar double edges on part of a triangulation, and the Hasse diagram of
the partial order <; on them

edges in 7" such that the remaining triangulation R of genus g will be in R,. Each double
edge in T thus gives rise to an edge in R and a planar triangulation in 7g, since the planar
part may contain other planar double edges. Now, when we look at R, an edge in R may
come from cutting and zipping a planar double edge in T', or from a simple edge in T
We can thus write an equality involving T, (), R,(t) and Ty(t) that will be used to deduce
the asymptotic behavior of R,(t), which happens to coincide with that of S,(t). Using
this line of reasoning, we have the following result.

Proposition 6.12. The OGF's R,(t) and Sy(t) have the same dominant singularity ps.
Furthermore, we have Ry(t) = So(t), and for g = 1, the OGF Ry(t) has the same asymp-
totic behavior as S,(t) near the dominant singularity, namely

Ry(t) = ¢y(1 — pg't) P9 V271 (1 4+ 0 ((1 - p5't)4)) .

Proof. In the planar case g = 0, since all double edges are separating and planar, we have
Ro = So, which leads to Ro(t) = Sy(t).

We now deal with the case g > 1. For a triangulation 7" in 7, let Dy,ax be the set of
maximal planar double edges with respect to <p. Lemma implies that double edges
in Dy, cannot have common edges. We perform the following surgery as in Lemma [6.10
in arbitrary order on each double edge d in D,,,,: we first cut along d, then zip the holes
created by the cutting. Since all double edges in Dy« are planar, we obtain a planar
triangulation in 7y for each surgery. Moreover, all double edges in D, are maximal in
the order <7, the remaining part will thus contain no planar double edge, which means
that it is in R,. We thus obtain a triangulation R in R, with marked edges, while each
marked edge e has a corresponding planar triangulation 7, in 7.

We now deal with roots and marked edges on these triangulations 7. and R. Let e
be a marked edge on R. According to Lemma if T, does not contain the original
root corner, then T, is rooted at the edge resulting from zipping the hole in the surgery.
Otherwise, T, contains the original root corner, and 7, is rooted at that corner and we
mark the edge on T, resulting from hole-zipping. We thus have two cases: either the
original root corner remains in the component R, or it is contained in one of the T,’s. In
the first case, all T,’s have no extra marked edge. In the second case, let e, be the root of
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R, then e, must be a marked edge, and the corresponding triangulation 7, has a marked
edge, while T, for any other marked edge e has no extra marked edge. We also notice that
the surgeries we perform do not change the total number of edges in these triangulations.
Therefore, in the first case, T can be considered as R with edges equipped with either an
empty map or a triangulation in 7y, and in the second case, T can be considered as R
with the same extra load on edges as before, except for the root edge, where it must be
equipped with a triangulation in 75 with a marked edge. We combine the two cases by
saying that the root edge of R can be equipped with either an empty triangulation or a
triangulation 7y with or without a marked edge.

Since the surgeries we perform on double edges in D, are 2-to-2 correspondence
according to Lemma[6.10], using the case analysis above, we obtain the following expression
of the OGF T, of triangulations in 7y:

Ry(t(1 + To(1)))
1+ To(t)

T,(t) = (1 4+ To(t) + tTy(t)) (6.6)

Here, the term w corresponds to a triangulation in R, with edges equipped with
0(t) g

either the empty triangulation or a triangulation in 7y, except for the root edge, whose

load is represented by the factor 1 + Ty(t) + t75(t). We can rearrange as

1+ To(t)
1+ To(t) + tTh(t)
By Proposition the dominant singularity of T(¢) occurs at pr for all g, and both
To(t) and tT}(t) are finite and non-negative at the dominant singularity. In particular, we

have t73(t) = 9/8 4+ O((1 — p3't)"/?) near t = pr, and the rational factor on the right-hand
side of (6.7) is A-analytic and has the following expansion at t = pr:

1+ To(t) prl)?
1+ Ty(t) + tTH(t) §+O(( 7))

Therefore, according to (6.7]), for any t* < pr, the value of R(t*(1+T5(¢*))) must be finite.
Let pg be the dominant singularity of R,(¢), which is a positive real number according to
Pringsheim’s Theorem (see Section [2.3.2)). We thus have

Ry(t(1 + To(t))) = Ty(t) (6.7)

9
pr = pr(1+ To(pr)) = gPT = Ps-

But since S, € R, we have pr < ps. We thus have pr = pg, that is, the series R,(t) has
the same dominant singularity as Sy(t).

Since the congruence relation of formal power series with non-negative coefficients is
stable by multiplication of a A-analytic function on both sides, by Proposition [6.8, we
thus have the following relation for ¢ near pr:

Ry(t(1+ To(1))) = 3,1 — o) 002 (140 (1 - ™). (68

Let u = t(1 4+ Tp(t)). We know that when ¢ = pr, we have u = pg. We also know that
ps = (9/8)pr. Therefore, we now study the behavior of (1 — pg'u) for ¢ near pr:

I —pg 'u=1- Pslt (Z - Z(l - P%lt) + 0 (( p_1t>3/2))
= 1= prt + pr't(1 = pr't) (1+ 0 (1= pp't)"?))
=1—prt+ (1= pz't) = (1= pz't)*) (1+ O ((1 = pr'1)"?))
—2(1— pp't) (1+ 0 ((1 = pr't)2)).
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Therefore, we also have

L't = S0 psu) (140 ((1— ")) (6.9)

We now want to perform the change of variable u = #(1 + Ty(¢)) in both sides of
(6.8)), but we need to prove that this change of variable does not break the A-analyticity
of related functions, because the congruence relation implies the existence of two A-
analytic functions, which should remain A-analytic after the change of variable to keep
the congruence relation. More precisely, we want to prove that R,(u), which is known
to have non-negative real coefficients beforehand, also has radius of convergence pg and
bounded by A-analytic functions with matching asymptotic behavior at pg.

Since R,(u) has non-negative real coefficients, by Pringsheim’s theorem, one of its
dominant singularities lies on the real positive axis. On the other hand, T(t) also has
non-negative real coefficients, therefore w(t) is increasing on the segment [0, pr]. We
further observe that u(0) = 0 and u(pr) = ps. We can thus study the behavior of R,(u)
for u € [0, pg] from that of Ry(u(t)) for t € [0, pr]. From the right-hand side of
and the fact that ps > pr, we deduce that R,(u(t)) has its first singularity at t = pr.
Therefore, R,(u) also has its first singularity at u = pg, and it is the dominant singularity.

To prove that R,(u) is also bounded by two A-analytic functions with matching asymp-
totic behavior, we first observe from Proposition that we have a congruence relation
of Sy(t). Combining with (6.7), the series Ry (u(t)) is coefficient-wise bounded by two
A-analytic functions f(t), g(t) for ¢t with matching asymptotic behavior. We can sup-
pose in addition that f(t),g(t) are of non-negative coefficients and share a A-domain
D = A(pr, R,0). By definition, the image of D under complex conjugate is itself. We
now consider the image of D by w(t). Since u(t) is a power series with real coefficients,
the image u(D) under complex conjugate is itself. We know that wu(t) is A-analytic. By
a simple computation, we deduce that u/(¢) is non-zero near ¢t = pr, which implies that
u(t) is conformal near t = pr in its A-domain. With u(pr) = ps and the fact that wu(t)
is conformal near t = pr, we deduce that the boundary of u(D) near u = u(pr) = ps
is formed by two curves that are sent to each other by complex conjugate, and each of
them is in an angle 6 with the real axis because the function u(t) is conformal at t = pr.
We can thus find a A-domain D" = A(pg, 0, R') in u(D), where ¢ > 6. Therefore, both
f(t(u)) and g(t(u)) as functions in u are analytic in D'.

We can now perform the substitution u = (1 + Ty(t)) to (6.8), using on the
right-hand side for terms in the expansion. With in mind, we thus have

Ry(u) = ¢g(1 — Pglu)ig)(g*l)/zfl (1 + O ((1 — pglu)1/4)) )

We also know that f(t(u)) and g(¢(u)) have this asymptotic behavior near u = pg. There-
fore, their coefficients must be ultimately positive. If we apply the same reasoning on the
error term, then at the cost of adding appropriate A-analytic functions to f(t(u)) and
g(t(u)), we know that the two functions bound R,(u) coefficient-wise.

We recall that, by the combinatorial definition of R,(u), it is in fact a power series
in U = u® with positive coefficients. Therefore, a dominant singularity of R,(u) in U
translates to three dominant singularities in u, differing by a factor e*™/3. By the change
of variable U = u? in the analysis, we can pretend that R,(u) has only one dominant sin-
gularity, without further periodic behavior. We can further assume that the two bounding
functions have the same periodicity and can be treated in the same way. In this case,
we don’t need to be concerned about the positivity of the two bounding functions after
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substitution, since by their asymptotic behaviors, their coefficients must be ultimately
positive. Therefore, by adding a polynomial, which does not change the asymptotic be-
havior nor A-analyticity, we can assume that the two bounding functions of R,(u) have
positive coefficients. We thus have the congruence

Ry(u) = ¢y(1 — pg'u) 00271 (140 ((1 — pglu)/h) .
We finish the proof by comparing this expression with that of S, in Proposition[6.7. [

Proposition leads to the following structural corollary. We recall that the class
S, is a subset of Ry (cf. Table [6.1)).

Corollary 6.13. For g > 0, let R be a triangulation chosen uniformly among triangula-
tions with 3n edges in Ry. When n — o0, the probability for R to be simple is 1—-0(n=14).

Proof. We clearly have S, < R, since §; < R,. By applying the transfer theorem

(Theorem[2.6]in Section[2.3.2) to both R(t)—S,(t) and Ry(t), we conclude that [t*"](R,—
Sy)(t)/[t*"|Ry(t) = O(n~'*), which is the probability that R fails to be in S,. O

6.4.2 Reducing Ny(t) to Ry(t)

We now prove that N, (t) has the same asymptotic behavior as R,(t), although N, < R,.
This is in fact a consequence of Proposition [0.12} Since S; = N, = Ry, we have S,(t) <
Ny(t) < Ry(t). By Proposition [6.12] the OGFs Sy(t) and Ry(t) have the same behavior
near their common dominant singularity, which implies that N, () also shares the same
dominant singularity and the same behavior. However, we will prove it in another way, in
order to illustrate a scheme to perform surgeries on double edges such that the resulting
maps do not contain planar double edges. This surgery scheme will be very useful in our
attack to the final goal M,.

Proposition 6.14. The OGFs Ry(t) and N,(t) have the same dominant singularity ps.
Furthermore, we have Ry(t) = No(t), and for g = 1, the OGF Ny(t) has the same asymp-
totic behavior as R,(t) near the dominant singularity, namely

Ny(t) = ¢y (1= p5't) P02 (140 (1= p5')")).

Proof. For the planar case g = 0, we have Ny = Ry, since the only difference between N
and Ry is that non-planar separating double edges are allowed in R but not in Ny, but
such double edges do not exist in the planar case anyway. For the case g = 1, we also
have NV} = Ry by the same argument. We now consider the case g > 1.

Let R be a triangulation in R4. If there is no non-planar separating double edge in R,
then R is also in NV,. We now suppose that R contains at least one non-planar separating
double edge, denoted by d. We want to transform R into triangulations in N, of smaller
genus by surgeries.

We will not directly cut along d to obtain smaller triangulations, but we will use this
surgery to determine a double edge that we will cut along. We temporarily cut along d and
zip the holes. Since d is non-planar separating, the cutting splits R into two components
RM and R® of genus ¢g; > 0 and g, > 0 respectively. We have g = ¢; + go. Let e; be the
marked edge resulted from zipping the hole on R™™. We now consider the set D; of planar
double edges on R that contain e;. We suppose that D; is not empty. By temporarily
duplicating e; to form a planar double edge, we can apply Lemma [6.11], which states that
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the set Dy has a greatest element, denoted by d,. Although technically d, is a double
edge on R, we identify it with the double edge on R before the surgery. When D; is
empty, we take d, = d. The upper part of Figure |6.17] shows an example of this process
to find d,. On this figure, no matter which double edge is taken as d, we will always find
the same d,.

Once we find the correct double edge d, to cut along, we restore the triangulation R
and perform the surgery for d,: cutting along d, and zi(pping the two holes created in the
cutting. We thus obtain two triangulations R and R*Q), where R\ is contained in R
if considered as set of faces of R. Let e{”) and {2 be the edges obtained from zipping the
hole respectively on R and R®. We will now analyze these two triangulations.

The case of RV is relatively simple. By maximality of dy, if any planar double edge
exists on RS}), it can not contain eg}), therefore is already planar in R, which is impossible.
Therefore, R\ is an element in Ry,

The case for B'? is more com plicated, since it may contain planar double edges that
need to be eliminated. Figure illustrates the surgeries we will be performing on RY.
If such double edges exist, their corresponding planar component contains el , or else
they would already be planar double edges on R. We then pick a minimal double edge,

denoted by d. ;, with respect to the order < RO We then cut along d. ; and zip the two
*

holes, and we obtain a planar triangulation S; and a triangulation R,(f% of genus go. By
minimality of d, ;, there is no planar double edge in S, therefore S; is in §y. We then
perform this procedure repeatedly. We consider the surgery on d, as the 0*" surgery. For

the triangulation Rfl) of genus g, obtained after performing the i*" surgery, let e,; 1 be

the edge on REEZ obtained from zipping the hole, we cut along a minimal planar double

edge containing e, ;1 in the partial order <, described in Lemma then zip the
*

holes to obtain a planar triangulation S;;; in Sy and a triangulation Rfl) +1 possibly with
planar double edges. This procedure is repeated until we obtain some Rf,)c that has no
planar double edge, which means that Rf,)g is in Rg,. When k = 0, i.e. Rgf) is already in
Ry, we just take REZ()) = Rf). We thus obtain from R,(E) a (possibly empty) sequence of

planar triangulations S, Sy, .. ., Sk and a triangulation Rff,l in Ry,. Figurel6.17|illustrates
how these triangulations are obtained. We also observe that the total number of edges
and faces remains unchanged after these surgeries.

We now discuss roots and markings on triangulations Rf.}), (S1,...,Sk) and Rf,)g ob-
tained from this series of surgeries. Since we only cut along separating double edges, the
second case of Lemma [6.10] always applies, and we will have a 2-to-2 correspondence for
each surgery. Without loss of generality, we can assume that the root corner is contained
in R obtained from tentative surgery of cutting along d, which implies that Rf,)C does
not contain the original root corner. Therefore, the original root corner must be contained
in either R or in one of the planar components S;. In the first case, RY is rooted at
the original root corner with one marked edge, each S; is rooted at the zipped edge of the
(i — 1) surgery and has one marked edge that is the zipped edge of the i*® surgery, and

finally Rff,)f is rooted at the zipped edge of the k" surgery. Similarly, in the second case,

both R and R,(f,)f are rooted at the zipped edges of surgeries, and each 5; is similarly
rooted and has one marked edge, except the S; that contains the original root corner,
which is rooted at the original root corner and contains two distinct marked edges. We
have thus finished describing a procedure to dissect a triangulation R in R,\N, with

g > 1 and a non-planar separating double edge d in R to obtain two triangulations R



6.4. COUNTING 3-CONNECTED CUBIC MAPS WITH SURGERIES 179

and Rf,l in R, and R, respectively and a sequence of planar triangulations (S, ..., Sk)
in 8y, such that ¢g;,92 > 1 and ¢g; + 9o = g. By Lemma [6.10| and the fact that we can
choose the starting double edge d, this surgery procedure is an injection, which gives us
the following bound of the series R,(t) — Ny(t):

0= Ry(t) = Ny(t) < )] (tR;1 (t)R”(t)ltlS{J(t) + Ry, (t)Rg2(t>%> '

g1+g2=g
91,9221

(6.10)

Here, the first term in the sum corresponds to the case where the original root corner

is contained in RS), and the second term to the other case. The OGF of triangulations
with a marked edge is obtained by first differentiating by ¢ then multiplying by ¢. For
the special case of two distinct marked edges, we simply differentiate twice by ¢ and then
multiply by ¢? to make up the right power. In the first case, the factor ﬁ%@) stands for
the (possibly empty) sequence of planar triangulations (Si, ..., Sk). In the second case, we
need to figure out the contribution of (S, ..., Sk) with a certain S; containing two distinct

marked edges, which is equivalent to two sequences (Si,...,S;_1) and (S;41, ..., Sk) along
2qn

with S;. This gives the factor %

We now analyze the terms on the right-hand side of (6.10)). Proposition m gives the

following asymptotic behavior of R (¢) near the dommant smgulamty ps:
R,(t) = © ((1 — pglt)_5(g_1)/2_1) :
Since the congruence relation is stable by differentiation, we have
R;(t) ~ 0 ((1 — pglt)’5(9’1)/2’2) :
From in Proposition , with a small computation, near the singularity pg, we have

9 9 ) .

So(t) = 1678 5 - Wﬂsl(l —ps't)? + 01 = pg't), (6.11)
" 9

So(t) = J072Ps 21— ps't)™2+0(1), (6.12)

We remark that S{(¢) is finite at the dominant singularity, and psSj(ps) = 9/16 < 1.
Since tS)(t) is a formal power series with non-negative coefficients, it is increasing from 0
to pg, meaning that (1 —¢Sj(¢))~! is finite in the interval [0, ps], including the dominant
singularity pg. These series are also A-analytic. We thereby substitute these asymptotic

formulas into (6.10]), which gives
0 < Ry(t) — Ny(t) < Z (@ ((1 — pglt)(’5(91’1)/2’2”(’5(92’1)/2’1))

g1+92=g
g1,92=1

+0((1- p3t)C (911)/21)+(5<g11>/21>1/2)>

= (9= 1) (O((1 = ps )"V £ 6 (1 - g5ty o)
-0 (( _1t) 5(g— 1)/2—1/2)'

Comparing to the asymptotic of R, in Proposition|6.12 we see that R,(t) — N,(t) is domi-
nated by the error term in the asymptotic expression of R,, which is O ((1 — pg )Tl =AY)
Therefore, N,(t) = R,(t), and we conclude the proof by comparing to Proposition [6.12]

]



180 CHAPTER 6. COUNTING GRAPHS WITH MAPS

dy de1  dio d.3 dy g

l Successive surgeries on double edges

~ A\ / B \\_ )/
— 777;\\ — — — _— — ~—
.—j\ S 1 /,/ \\\\ S, 3 Rfé)l
P— \ 4
RWY S; Sa

Figure 6.17: Cutting along a double edge and chasing the planar parts

In the proof of Proposition [6.14] after cutting along a non-planar separating double
edge, we obtain two components with marked edges. We have chosen the double edge
to cut along such that only one component may contain planar double edges after the
surgery. For the other component, all double edges that become planar after a surgery
must contain the new edge e that comes from zipping a double edge in the surgery. By
successively taking a minimal element with respect to the inclusion order among all such
double edges and cutting along them, we obtain a sequence of planar triangulations, and
the remaining part of the component no longer has any planar double edges. We refer to
this method of eliminating planar double edges after a surgery as chasing the planar parts
after the edge e, which will be used frequently in the proof of the asymptotic enumeration

of M,.

6.4.3 Reducing M,(t) to Ny(t): loop elimination

In this subsection, we will prove the asymptotic behavior of My(t) in Proposition ,
using results from previous subsection. We start by introducing a family of triangulations
with boundaries that will be used in the proof of the asymptotic enumeration of M,. We
recall that a triangulation with boundaries is a map with boundaries such that all faces
(excluding boundaries) are of degree 3. For double edges on maps with boundaries, we say
that they are planar if by cutting along them and zipping a hole, we obtain two connected
components and one of them is a planar map without boundaries. In other words, a planar
double edge cannot contain any boundary in its planar component. We denote by R,
the set of triangulations of genus ¢ having exactly h > 0 ordered boundaries, all of
length 1, while containing no planar double edge nor loop that is not a boundary. We
have Ry o = R, Similarly, for 1 > 0 we denote by Rj, the subset of R, formed by
triangulations rooted at their minimal boundary loop with the clockwise orientation. The
particular choice of the orientation is to make sure that the corresponding root corner
is not inside the boundary. The OGFs of R, ), and Ry, are denoted by R, and Rj ),
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v Ao A

Figure 6.18: Three cases of the triangular face with a loop as its side

respectively.

The reason of introducing these families of maps with boundaries is that, in the fol-
lowing, we are going to eliminate loops from triangulations in M, by cutting along them,
which gives triangulations with boundaries of length 1, captured by the classes R, . Since
these triangulations are the building blocks of our maps in M, it will be convenient later
to know about their asymptotic enumeration. We now look at the asymptotic behavior
of Ry and RY ;.

Proposition 6.15. For g = 0 and h > 0, the OGFs Ry,(t), R}, (t) and Ry(t) have the
same dominant singularity ps. Furthermore, we have

Ryn(t) = © (1 — pg't) 2o =h=t)

S = 0 ((1— gty P00
Proof. Given a triangulation with boundaries R € R, we first analyze the triangular
face adjacent to a boundary delimited by a loop ¢ adjacent to a vertex u on R. Since
the loop forms one side of the triangle, the other two sides must also be adjacent to wu.
There are three cases for these two sides: they are either two loops, or a double edge, or
one single edge. Given a triangular faces in one of these three cases, by cutting along all
its adjacent edges, we obtain a triangulation with boundaries with only one face, and the
three possibilities are denoted by ¥, Ay and A respectively. Figure [6.18]illustrates these
three cases. We can see that we can obtain A from Ag by zipping the double edge.

Except for the case g = 0, h = 3 where we can have ¥ € R 3, and the case g = 0,h = 1
where we have A € Ry, a loop in a map in R, must be adjacent to a triangular face of
the form Ag.

For any fixed g > 0, we first analyze the asymptotic behavior of R,;(t) with an
induction on the number of holes h. The base case h = 0 is trivial, since we have
Rg0 = Ry in this case. We now fix the value of i, and we suppose that our proposition
is valid for all R, _1(t), that is,

Rg,h—l(t) ~ 0 ((1 — pglt)—5(g—1)/2—h) .

Let R be a map in R, p, and £ the loop that delimits the first boundary. We suppose
that R is neither W nor A. The face adjacent to ¢ must be Ay and the other two sides
form a double edge d. We now perform some surgeries to obtain a counting result. We
first cut along d and zip the two holes, obtaining A from the triangular face and R’ the
remaining part with a marked edge e resulted from zipping. Since we eliminate a hole
using surgery, there may now be planar double edges in R’, which must contain e in their
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planar component. We then chase the planar parts after the edge e, as in the proof of
Proposition [6.14 We thus obtain a (possibly empty) sequence (Si,Ss, ..., Sy) of planar
triangulations in Sy and a triangulation R” with one less loop but the same genus and
without loops nor planar double edges. Therefore, R”, when rooted, is in R, ;1.

We now deal with the rooting issue. There are three cases for the location of the
original root corner of R:

(a) On A;
(b) On one of the planar triangulations S;;
(c) On R".

We denote by Ré?,)l(t), Réljz(t), Réfz(t) the OGFs of triangulations in each case respec-
tively. We thus have

Ryn(t) = t*1y—gms + 2 1y—gpm1 + RO (8) + ROM(E) + RO(1). (6.13)

We now analyze the asymptotic behavior of the OGFs for all cases, and we will see that
Case (c) is dominant and gives the asymptotic behavior of R, (t).

We now analyze the rooting of each case. We recall that we always perform the surgery
in Lemma[6.10| on separating double edges, then zip the holes created in the surgery. This
sequence of surgeries does not alter the total number of edges. Therefore, when we look at
each edge resulted from zipping, the component containing the original root corner takes
it as a marked edge, while the other component is rooted at that edge. We also recall that
the surgery in Lemma [6.10] is a 2-to-2 correspondence. In all three cases, we will chase
the planar parts (c¢f. Proposition and the explanation that follows) by applying the
surgery in Lemma [6.10] repeatedly.

In Case (a), we obtain from surgeries a rooted copy of A with the non-loop edge
marked, a sequence of rooted planar triangulations in Sy with a marked edge, and R” a
rooted triangulation in R, ;—1. We thus have

3t?

- _R,ua(d).
1—tS(’](t)Rg’h 1)

The term 3t? accounts for the 3 root possibilities of A, which has two edges and 3 possible
root corners. Since the marked edge on A is fixed, there is no extra factor for its choice.
The term (1 — tS}(t))~" accounts for elements in S with a marked edge. The term
R, p—1(t) is for R”. From Proposition (see (6.11)), we know that (1 — ¢S)(¢))~" is
finite at the dominant singularity ps. Therefore, by the induction hypothesis, near the
singularity pg, we have

R (1) = © ((1 — pglt)~dleb/2=h) (6.14)

In Case (b), we obtain from surgeries a copy of A that is rooted at the non-loop edge,
a first sequence of rooted planar triangulations in Sy with a marked edge, the planar
component in &y that is rooted at the original root corner and has two marked edges,
a second sequence of rooted planar triangulations with a marked edge, and R” a rooted
triangulation in R, ;—1. We thus have

2S5y (t)

O (1) = 242 =20
Bonl) = 2 g0

Ry p_1(t).
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The factor 2t? is the contribution of A, which can be rooted in two ways at the non-loop
edges. The factor (1 —tS)(t))~2 accounts for the two sequences of planar triangulations
with marked edge, while the factor t2S((t) is for the planar component with two marked
edges. Finally, the possibilities of R” are covered by Ry j,—1(t). Again from Proposition [6.7]
(see (6.12)), we know that Sj(t) = © ((1 — p5't)~"/?) near the dominant singularity ps,
and (1 — tSy(t))~2 is finite at its dominant singularity ps. Therefore, by the induction
hypothesis, after accounting for Sjj(¢), near the singularity pg, we have

R (t) = © (1 — pglt)~do-D/2-h12) (6.15)

Finally, in Case (c), we obtain from surgeries a copy of A that is rooted at the non-
loop edge, a sequence of rooted planar triangulations in Sy with a marked edge, and R’
a rooted triangulation in Ry ;1 with a marked edge. We thus have

2

)= ———tR t).
The composition of the factors should be clear by comparing to previous cases. For the
behavior near the singularity pg, always by the induction hypothesis, after accounting for
the differentiation of R, ,(t), we have

RY(t) = © ((1 — pglt) 2o D/2=h-1) (6.16)

9,

Substituting (6.14]), (6.15) and (6.16]) back to (6.13)), we see that the dominant term

is R;‘f,)z. Since all OGFs here are either A-analytic or congruent to a A-analytic function,
we have

Ryn(t) = © ((1 — pg't) Pl /2=h=1y,

We thus conclude the proof for the estimate of R, (t).
For the case of R}, (t), we simply observe that it accounts for one third of the pos-
sibilities in Case (a) of the analysis of R, ;(t), and the result follows from the previous

analysis of R;’?,)l (). O

Using Proposition [6.15] we can prove the main result of this section, which is the
asymptotic enumeration of M,.

Proof of Proposition[6.9 By Proposition and Proposition [6.14] the series N, have
the same asymptotic as S,. Therefore, we only need to compare M, with N,.

For the planar case, since any loop will be separating, we have M, = N, which
implies My(t) = Ny(t). For the case g > 1, the only difference between M, and N is
that some loops are allowed in triangulations in M, namely those that are not separating
nor forming a separating pair. We recall that a separating pair of loop is a pair of non-
separating loops such that cutting along both separate the surface. We thus want to
eliminate any existing loop by surgeries.

Let M be a triangulation in M \N,. By definition, M contains at least a loop. Let
L = ({1,0,...,0,) be all the loops in M, ordered arbitrarily. We now cut along these
loops one by one in the order of L. The surgery of cutting along a loop may split the
two ends of another loop, which then ceases to be a loop. In this case, we don’t perform
surgeries on it. Since no loop can be created in these surgeries, at the end we obtain a set
P(M) of triangulations with boundaries of length 1, which are all delimited by loops. We
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order the boundaries by the time they are created from surgeries, and for two boundaries
created from the same surgery, we order them arbitrarily.

We observe that elements in P(M) are all triangulations With boundaries of size 1.
Let M be an element in P(M). By definition, all loops in M delimit a boundary.
For planar double edges on maps with boundaries, we say that their planar components
cannot contain any boundary. Under this definition, there is no planar double edge in
M©. Therefore, M is an element in R, j for some ¢’ < g and A’

We now discuss the possibilities for P(M). There are two cases: either P(M) has only
one element, or it has multiple elements. Let ./\/lél) be the set of triangulations in M, in
the first case, and M the set of those in the second case. We denote by M{" and M?
their respective OGFs. We thus have M, = N, w ./\/lgl) W ./\/lgz), which leads to

My(t) = Ny(t) + M (t) + MP(t). (6.17)

In the case where P(M) has only one element, we denote this element by M1, Let
h be the number of loops that we have cut along, then M ) has 2h ordered boundaries
and is of genus g — h. Therefore, we have h < g, and M™) is an element of R, j2,. By
Proposition [6.15, we have

0< M (1) R @ flt —5(g—1)/2—1+h/2
Z so2n(t Z ) (6.18)

_ @ (( *1t) 5(g 1)/2 1/2).

We now deal with the case where P(M) contains more than one element. We denote
its elements by MM .. M® for k > 2, each of genus g¢1,. .., g, with hq, ..., hs holes of
size 1 on each. The total number of loops that are cut along is h = (hy + - - + hy)/2.

We now consider the number of boundaries that each component M® contains. For
each M@ it is clear that it cannot contain only one hole, or else the associated loop is
separating in M, which should not exist due to the definition of M,. If M (@) contains two
boundaries, there are two cases: they either come from the same loop or from two different
loops. In the first case, the loop is non-separable, and there is only one component in
P(M), which contradicts our assumption. In the second case, the two different loops thus
form a separating pair, which is against the definition of M,. Therefore, the two cases
do not stand, and each M® contains at least three boundaries. We thus have

1 3k
h = §Zh > (6.19)

On the other hand, since there are k connected components, there must be k& — 1 loops
that are separating when we cut along the loops. Therefore, there are h — k + 1 loops that
are non-separating when we cut along them, and each of them decreases the total genus
by 1. Therefore, we have the following relation on the total genus after all the surgeries:

k
Zgizg—h+k—1. (6.20)
i=0

Combining (6.19) and (6.20), by observing that all the genera g;’s are non-negative, we
have

g=h—k+12k/2+1, k<2g—1), h<3(g—1). (6.21)
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Therefore, P(M) has more than 2 elements only if g > 2, and in this case it has at most
2(g — 1) elements. It is also easy to see that h > 3k, since each M@ contains at least
three boundaries.

We now come to the discussion of roots on each components M®. There will be
one element that contains the original root corner, and without loss of generality, we can
suppose that it is M. Therefore, M) is an element in Ry, as defined previously and
analyzed in Proposition [6.15] For other components, we first recall that there is an order
on their boundaries. For the sake of indicating the orientation of a component M@ with
1 # 1, we root it at its minimal boundary loop such that the root corner is not inside the
boundary. We thus see that M@ is in Ry, 5, For the reconstruction of M from P(M), we
still need the information about how boundaries are paired up. Since boundaries on each
M@ are ordered, the number of ways to combine them into an ordered list by, bo, ..., boy,
is counted by the multinomial (hl, hzf.7hk), and we say that we will glue up the boundaries
borp_1 and by for all 1 < k& < h. It is clear that every possible gluing reconstruction
from P(M) to M can be obtained in this way. We should notice that we over-count the
number of ways to reconstruct M, because some possible boundary pairings may repeat,
and some pairings we obtain will not give a connected map. For instance, if we have
several components in P(M ), one of them with four holes, then any pairing that leads to
gluing these four holes up against each other will not be valid. Nevertheless, this over-
counting will be sufficient for an upper bound of M 9(2)( ). We recall from Proposition
that Ryp(t) = O ((1—pg't) >0 D2""1) and R¥ () = O ((1 — pg't)~>9"D/27") near
their dominant singularity pg. Using , we thus have

3(9—1)/2] ) )
M®(t) < Z Z 2 (h " ) i T RE
=2 =[3k/2] g1+ +gr=9—h+k—1,g;=0 1 2,...’ 1
hi+--+hg=hh;=3
3(g—1)/2]
= 2 Z Z ) <(1 — pglt)*f)(Zf:l gi*k‘)/2fzf:1hi,1>

k=2 h=[3k/2] g1+ +gr=9—h+k—1,9;=0
hi+--+hp=2h,h; >3

2(g—1) [3(9—1)/2]

Z Z @ —psit)” 5(9*h*1)/272h+1)

=2 h=[3k/2]
e ((1 — patt)” 5(g— 1)/2+1/2) '

(6.22)

We should note that R, ,(t) and R}, (t) are all bounded by some A-analytic function.
We recall that the three terms that add up to My(t) in (6.17) are Ny(t), M) (t) and

M 52) (t). By comparing Proposition to (6.18)) and (6.22), we see that they all have

the same dominant singularity pg, and the dominant term is N,(¢). Therefore,
Ny(t) < My(t) < Ny(t) + © ((1 — pg't)Plo=1/2=12)
But Proposition states that
N,(t) = ¢,(1 — pg't)—>lo-1/2-1 (1+0((1- _1t)1/4))

We observe that even the error term dominates M{(t) and M{?(t). We therefore con-
clude the proof. n
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Similar to Corollary [6.13] we have the following corollary for the probability of a
triangulation in M, to be simple for g > 0. The case g = 0 is clear, since My = Ny = S,
therefore every triangulation in M, is simple.

Corollary 6.16. For g > 0, let M be a triangulation chosen uniformly among trian-
gulations with 3n edges in M,. When n — oo, the probability for M to be simple is
1 —O(n=4).

Proof. We clearly have S, < M,. By applying the transfer theorem (Theorem in
Section [2.3.2)), we conclude that [t>"](M,(t) — S,(t))/[t*"|M,(t) = O(n~Y/*), which is the
probability that M fails to be in &,. O

6.5 Controlling widths

Proposition gives us the asymptotic enumeration result on M,. According to our
strategy, which is illustrated in Figure [6.8] the next step, which is represented by the only
arrow between the two sides, will be using the unique embedding theorem of Robertson
and Vitray (Theorem to transfer the asymptotic enumeration of maps to graphs.
However, Theorem only applies to cubic graphs embeddable on S, that have facewidth
at least 2¢g + 3. Therefore, we need to control the facewidth of the embeddings of these
cubic graphs, which are duals of triangulations that we have counted in Proposition [6.9]
This is done by the following proposition.

Proposition 6.17. Let M be a cubic map and M* its dual triangulation. We have
fw(M) = ew(M*).

Proof. We first observe that, in a cubic map M, if two faces fi, fo share an adjacent
vertex, then they also share an adjacent edge. Let S be a set of faces in M that contains
a non-contractible circle C'. Suppose that C' passes through a certain vertex v to go from
a face f; to another face f;. By the previous observation, fi, fo share an adjacent edge
e, and we can modify C' such that it goes from f; to fs by crossing e. By applying this
modification whenever C' passes through a vertex, we obtain a non-contractible circle C’
that does not pass through any vertex. Therefore, we now only consider non-contractible
circles that does not cross any vertex. Let S* be the set of vertices of M* that are dual
of the faces in S. Then the circle C' that crosses faces and edges on M corresponds to
a cycle C* on dual vertices and edges of M*. It is clear that C'* is also non-contractible
on M*, and the length of C* is at most the size of S, since we can always make C' to
cross a face just once. Therefore, we have fw(M) = ew(M*). On the other hand, for a
non-contractible cycle C* on vertices of M*, if we consider it on the cubic map M, it is
contained in the set of faces that are dual to the vertices it contains on M*. Therefore,
fw(M) < ew(M*) and we have the equality. O

By Proposition [6.17] cubic maps of facewidth at least 2¢g + 3 correspond to trian-
gulations of edgewidth at least 2¢g + 3. We denote by ./\/lgw>’“ the set of triangulations
in M, with edgewidth at least k, and by M ¥=*(t) its OGF. We are thus interested in
the asymptotic enumeration of M§W>29+3, since by Theorem , their duals, which are
3-connected cubic maps with facewidth at least 2¢g + 3, are unique embeddings of their
underlying graphs. The following proposition shows that this restriction on edgewidth has
no effect on the asymptotic number of triangulations that we count. Similar but much
stronger results for other kinds of maps can be found in [12] 14].
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N |

Figure 6.19: Surgery on a non-contractible cycle

Proposition 6.18. For fized integers g > 0 and k > 3, the OGF M;V@k(t) has the same
dominant singularity ps as My(t), and also the same asymptotic behavior near pg, namely

MEH(t) = ¢y(1— p5't) "0V (110 (1 - p5't) ).

Proof. We will first prove the corresponding result on the class S,. Let SgC:i be the set
of triangulations in S, with a marked non-contractible cycle of length ¢ for ¢« > 3, and
SgC:i(t) its OGF. We use similar notations for triangulations of S, with a given edgewidth.
It is clear that S¢"='(z) < S{='(x), since a triangulation of edgewidth ¢ must contain at
least one non-contractible cycle of length 1.

Let S be a triangulation counted in S~ and C its marked non-contractible cycle.
We perform the following surgery, illustrated in Figure [6.19} we first cut along C, then
glue each hole with “a wheel of size i”, which is the only triangulation with a boundary
of length ¢ and an extra vertex that is adjacent to all vertices on the boundary, just like a
wheel. When ¢ = 3, we don’t need the extra vertex and just recognize the holes as faces.
We then pick arbitrarily an edge on ', mark its copies after the surgery and orient them
such that the new added faces are on their right. Given the marked and oriented edges,
it is easy to revert the surgery. We notice that the number of edges increases by 3¢ after
the surgery.

We now have two cases: either C' is separating or not. If C' is separating, we obtain
two triangulations S and S@® of genus ¢; and g, such that g, + ¢go = ¢, and we can
suppose that S contains the original root corner. In this case, we turn the marked edge
of S® into its root. Otherwise, C is not separating, we obtain a triangulation M’ of genus
g — 1 with two marked and oriented edges. The triangulations S, S® are in Sg1> Sy,
respectively, because the surgery cannot create loops nor double edges. Since the surgery
can be reverted, for ¢ > 3, we have the following dominance relation:

STty < >0 S (8)S,, (1) + £28) 4 (). (6.23)
91;-_9221=9

The factor 3 here accounts for the extra 3i edges we obtain from the surgery. The case
1 = 3 is a bit special, since no extra vertex is added. In this case, we have

ESCTE) < D 18, (6)Sg (1) + 25y, (1), (6.24)
g1+g21=g
gi=

The factor t3 accounts for the extra 3 edges that comes from duplication of C'.
From Proposition , we know that Sy(t) = © ((1 — pg't)~*=1/271). Using this fact
on the right-hand side of (6.23)) and (6.24)), for all ¢ > 3, we have

SgC:i(t) <0 ((1 . pglt)—5(g—1)/2—1/2> ’
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which is dominated by the error term of Sy(¢). This is valid for all constant i. We thus
have

S(t) = Sg"=H(t) = Sy(t) - ki Sg M () = S,(t) — ki Sg ().

Since all S¢=(t) are negligible compared to Sy(t), the series S¢*>*(t) has the same dom-
inant singularity and the same asymptotic behavior as S,(t).

To transfer the result to M, ngk(t), we notice the following chain of coefficient-wise
dominance relations:

SgR(t) < MPR(t) < My(t) = S,(t).

We thus conclude that M, ;Wzk(t) has the same dominant singularity and the same asymp-
totic behavior as M (t). O

With all these preparations, we are ready to transfer our result on triangulations to
cubic graphs.

6.6 Decompositions of cubic graphs

We now enter the world of graphs, where the size of a graph is given by the number of
vertices, and these vertices are given distinct labels. We recall that graphs are not rooted.
In such a labeled world, we need to use EGFs for enumeration. Therefore, in this section,
there will be a transition from OGFs for maps to EGFs for vertex-labeled graphs.

We first define several classes of graphs. We denote by C, (respectively B, and D) the
class of connected (respectively 2-connected and 3-connected) cubic vertex-labeled graphs
without triple edges that are strongly embeddable into S,. For a little help to memorize
the notation, it is clear that the letter C in C, and the letter B in B, comes from the words
“connected” and “bi-connected”, and the letter D in D, can be seen as coming from “drei-
connected”, where drei means “three” in German. Since we will be using facewidth (and
edgewidth) in the decomposition of graphs, we will need classes of graphs with restrictions
on these widths. These restrictions will be expressed by a superscript on the notation of
graph classes. For instance, D§W>3 means the class of 3-connected cubic vertex-labeled
graphs with facewidth at least 3.

For EGFs of these graph classes, we use x to mark the size parameter, that is, the
number of vertices. We will also need to mark some extra statistics. We mark the number
of simple edges by y, the number of double edges by z, and the number of loops by w. In
other words, for any class F consisting of connected vertex-labeled cubic graphs without
triple edges, its EGF F(z,y, z,w) is defined by

m#vertlces(M )

(#Vertices(M))!y

F([L’, Y, 2, ’ZU) _ Z #simple edges(M) Z#double edges(M)w#loops(M) )

MeF

The reason that we don’t use the variable ¢ here for edges is that we want to separate
simple edges from double edges and loops. Since there is no triple edge, the statistics of
the number of double edges is well-defined. When some statistics are trivially null in a
class family (for example, the number of double edges and loops in a class of 3-connected
cubic graphs), we just drop their corresponding variables in the EGF.

By taking all these statistics into account, once we obtain an expression for F'(x,y, z, w),
we can put weights on double edges and loops. This control is important for our purpose,
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since we are mainly interested in the enumeration of weighted cubic graphs with a weight
(or compensation factor) 1/2 for each loop and double edge. For this purpose, we define
the following specialization of our EGF F(z,y, z, w) using a new variable v:

V13 1/6
Flv) < F (v /4 ,01/6, —_—, ) . (6.25)
27 2
We can then express the total weight of cubic graphs with compensation factors. We
recall that the number of vertices in a cubic graph is always divisible by 2, and a cubic
graph with 2n vertices has 3n edges.

Proposition 6.19. Let F be a class of connected cubic graphs without triple edges. For
an integer n > 0, we denote by F(2n) the set of cubic graphs with 2n vertices. We can
express the weighted sum of cubic graphs in F(2n) in terms of coefficients of F(v) as

Z 2—#d0ub1e edges(G)—#loops(G) _ (2n)'[v”]F(v)
GeF(2n)

Proof. We recall that F(v) = F(v'4 06 ¢'3/2, 0Y6/2). Given a cubic graph G in
F(2n), it has 3n edges. Suppose that G has a simple edges, b double edges and ¢
loops, we then have a + 2b + ¢ = 3n. The contribution of G to F(v) will then be
((2n)!))~Lyr/ata/6+b/3+e/69=b=c — ((2p)!))~1y"27P=¢. On the other hand, the compensa-
tion factor of G also happens to be 27°=¢. Therefore, the contribution of G to both sides
of the equation is the same, which ensures the equality. O]

By taking other specializations of F'(z,y, z,w), we can also answer enumeration ques-
tions about cubic graphs with different weights. The reasoning is similar to that in
Proposition m For instance, we can look at F(v'/4,v'/6 ¢'/3 ¢1/6) for the enumeration
of unweighted cubic graphs, and F(v'/*,v'/¢,0,0) for simple cubic graphs (i.e. without
double edges nor loops).

As a remark, it may seem to be much ado about nothing to have a variable for vertices
in F(x,y,z,w), since a cubic graph with 3n edges must have 2n vertices. However, we
keep the variable for the clarity of our exposition of graph decompositions that we will
use later.

Having defined the classes of graphs we will work on, we now transfer the asymptotic
enumeration result of triangulations to 3-connected cubic graphs, using Theorem

Proposition 6.20. For given g = 0 and k < Qg + 3, the generating function wa>k(v)

has the dominant singularity at v = pp = p = ﬁ Furthermore, we have the followmg
asymptotic behavior near the dominant singularity:

DEH(0) = (1~ p5') + 0 (1 = pp'0)?)

DIk (v) = ¢y lo <1 — p5') + O (1= pp'o)),

DY) 2 (1 = pp'e) 02 4O (1= pplo) TR,

Here, all c,’s are explicit constants independent of k as in Proposition .

Proof. Let M, be the set of unrooted maps in M, with edges labeled from 1 to the
number of edges. We denote by M,(t) the EGF of M, with the number of edges as
size parameter. We use EGF here because we have a labeled class. For a triangulation
M e M, with n edges, there are n! possible ways to label its edges. Conversely, for a
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triangulation M € M, with n edges, there are 2n possible ways to specify its root corner.
Therefore, we have

[£"]M,(t) = 2n[t"]M (1),

and thus
t

M,(t) = 2tM,(t), M,(t) = J (25) 71 M, (s)ds. (6.26)

Now we introduce the class D,, which is the set of cubic graphs in D, with distinct
labels on edges, from 1 to the number of edges. We denote by D, its EGF, with the
number of edges as size parameter. By definition of Dy, every graph G € D, is strongly
embeddable on S, therefore G has at least two embeddings (which are unrooted maps)
on S,, one by existence, the other by changing the orientation. Since vertices are labeled,
the two embeddings cannot be isomorphic, or else each face would be mapped to another
face with exactly the same vertices and adjacent edges but opposite orientation, which
can only happen in a map with exactly two faces. By Proposition [6.6 the unrooted maps
obtained from embedding elements of D, are exactly the duals of the triangulations in
M,, with labels on edges (but not labels on vertices). Since a cubic graph with 2n vertices
has 3n edges, by Proposition [6.19] we have

2D, (v) < M,(v'?).

The substitution t = v'/3 is due to the fact that the coefficient of v" accounts for cubic
graphs with 3n edges in D, (v).

By Proposition [6.17 for a cubic map M on S, its facewidth fw(M) is equal to the
edgewidth ew(M*) of its dual triangulation M*. Furthermore, from Theorem [6.2| we know

that every cubic map in 52”22“3 has exactly two embedding. Combining the two facts,
we have
~fw>2g+3 s 7ew=29+3, 1/3
2D, (v) =M, (v'/3).
Obviously, we have E;W>29+3(v) < D, (v), therefore
——ew=>2g+3 —fw>2g+3 —fw=>k - —
oM, (013 = DT (v) < DT (v) < Dy(v) < 2M g (0'?). (6.27)

On the other hand, if we compare the two EGFs D,(v) and D,(v), we can see that they
are identical. Indeed, if we consider 3-connected cubic graphs with both edge labelings
and vertex labelings, they can be obtained by adding an edge labeling to an element in
D,, where there is already a vertex labeling. The number of such cubic graphs with 2n
vertices and 3n edges is thus (3n)!(2n)![v"]Dy(v), where the factor (2n)! accounts for the
fact that Dy(v) is derived from an EGF with the number of vertices as size parameter,
and (3n)! the number of possible edge labelings. Equivalently, these graphs with labelings
on edges and vertices can also be obtained by adding vertex labelings to elements in
D,. By a similar reasoning, the number of such cubic graphs with 2n vertices and 3n
edges is (2n)!(3n)![v"]Dy(v). We thus have [v"]Dy(v) = [v"]D4(v) for all n, therefore

D,(v) = Dy(v). Substituting into ([6.27)), we have

—ew=>=>2g+3

oM, (v'?) < DZF(v) < 2M 4 (v'?). (6.28)
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By applying (6.26)) to Proposition and Proposition [6.18] we have

C, _ _
S =52+ 0 ((1=ps't)*)

-— ——ew>=H C _ _
My (t) = MY"7(t) = log(1 = ps't) + O (1= ps')"*) |

Mo(t) = My~ (1) =

with fixed constants ¢,. We then conclude the proof by combining them with (6.28)). O

We now pass from 3-connected cubic graphs to 2-connected cubic graphs using Corol-
lary [6.4] in which we will need to deal with planar 2-connected components. We thus
introduce the class N° of 2-connected vertex-labeled cubic planar graphs with a marked
and oriented edge, which will be the class of these planar components. Cubic graphs in
N are also called networks. We should not confuse N° with the class N, which consists
of some types of triangulations of S,. We denote by N°(z,y, z) its generating function,
where the marked edge is never counted as a part of a double edge, that is, if one of the
edges in a double edge is marked, the contribution of the double edge will be y? instead
of z. In the following, by abuse of notation, we extend the meaning of < to multivariate
power series, where it compares the coefficients of each possible monomial.

Proposition 6.21. For g > 0, we have the following relation between EGFs of 3-
connected cubic graphs in D, and 2-connected cubic graphs in B:

Dy (x,4) = Do(,9) < B, (x,y,2) < Dy"*(z,9), (6.29)
where y = y(1 + N°(z,y, 2)).

Proof. The case g = 0 clearly holds, since planar graphs have infinite facewidth. We now
suppose that g > 1.

Given a genus g > 1, we denote by D, the class formed by elements of the form
(D, L), where D is a graph in Dy and L = [Lc]cep(p) is a list indexed by edges in D whose
elements are either an empty graph or a network. It is clear that the EGF of D, is given
by Dy(z,y). We can also add a facewidth constraint to D, which will then be transferred
to a facewidth constraint on D for an element (D, L).

We first establish an injection from B£W>3 to f;w>3, which gives the upper bound of
B;W23. By Corollary , G has a unique 3-connected component 7" strongly embeddable
into Sy with the same facewidth, and all other 3-connected components are planar. Since
(G is a cubic graph, we can suppose that the two vertices in a separator that separate T
from other components have two edges linking to vertices in T, as in Figure m(a). We
can then disconnect the other components as in Figure [6.20] (there u is the vertex with a
larger label, which fixes the orientation of {u',v'}), and each disconnection gives T a new
edge {u,v}. Since we will only consider separators directly adjacent to T, they separate T
from 2-connected planar sub-graphs (thus networks) that can be further decomposed. By
disconnecting all other 2-connected components from 7T using the procedure illustrated
in Figure , we obtain a graph 7" in D§W>3 with its edges either comes from the 3-
connected component 7T or from disconnections. We can also say that edges of T are
associated to either nothing or a network, or equivalently, we have a list L indexed by
edges in 7" whose elements are either the empty graph or a network. The pair (77, L)

is thus an element in f;WBS. To show that this procedure is indeed an injection, we will
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Figure 6.20: 3-connected and 2-connected component separation in cubic graphs, with
separators distinguished

show how to reconstruct a graph G in B;WZ?’ from a given (7", L) in ﬁngZS. For each edge
e = {u,v} in 7" where u is the vertex with a larger label, either the associate element L.
in L is empty, in which case we do nothing; or L. is a network with an oriented marked
edge ¢ = (v/,v’), in which case we perform the operation illustrated in Figure [6.20[a) in
the reverse direction, first deleting both e and €', then adding two new edges {u, '} and
{v,v'}. The result of this operation is clearly in B;WZ?’. Therefore, the correspondence

from B;WZS to f;wzg is indeed injective, and we have the upper bound.

For the lower bound, we only need to establish an injection from the set @;WZS\fO to
B£W>3. In fact, this set is formed by elements of the form (7, L) such that T is strongly
embeddable into S, of facewidth at least 3 but not planar. We recall that a graph can be
strongly embeddable into surfaces of different genus, see Figure for an example. The
injection is still provided by the procedure described in the previous paragraph, but this
time we can uniquely determine (7', L) from G, since now GG contains only one 3-connected

component that is not planar. We thus have the lower bound.
m

We continue the decomposition along connectivity to pass from 2-connected cubic
graphs to connected graphs, which requires yet another class of cubic graphs. We denote
by Q the class of vertex-labeled connected cubic planar graphs with a marked loop. The
EGF of Q is denoted by Q(z,y, z,w), where the marked loop is regarded as a simple edge
and contributes a factor y.

Proposition 6.22. For g > 0, we have the following relation between EGFs of 2-
connected cubic graphs in By and connected cubic graphs in C,:

By=(w,9,2) = Bo(x,9,2) < C)"(x,y, 2,w) < B (2,7, 2), (6.30)

where

j = Y S Y v,
1—Q(z,y,2,w)’ 2 \1-Q(x,y, z,w) 2 '

Proof. The case g = 0 clearly holds, since planar graphs have infinite facewidth. We now
suppose that g > 1.

Given a genus g > 1, we denote by B, the class formed by elements of the form
(B, LY, L?), where B is a graph in B,, LY = [LY]. is a list indexed by simple edges in B
whose elements are (possibly empty) lists of graphs in Q, and L* = [LY], is a list indexed
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by double edges in B whose elements are multisets containing two (possibly empty) lists
of graphs in Q. When writing the EGF of B,, a double edge d in B has weight z if and
only if the corresponding item L, consists of two empty lists, or else it has weight y?/2.
We will see the reason of this weighting scheme later. Under this convention, the EGF
of B, is clearly given by B,(z,y, z). We can also add a facewidth constraint to B,, which

will then be transferred to a facewidth constraint on B for an element (B, LY, L*).
—fw>=2

We first establish an injection from C£W>2 to B, ~". By Corollary M G has a unique
2-connected component B strongly embeddable into S, with the same facewidth, and all
other 2-connected components are planar. Since G is a cubic graph, as illustrated in
Figure m(b), for a cut vertex v that separates B from other components, v must have
two edges in B, linked to two vertices uy, us. We can see that u; cannot be the same as uo,
or else u; would be a cut vertex. As illustrated in Figure[6.20|(b), we delete the two edges
{v,u1}, {v,us}, attach a loop to v and add an edge {u;,us}. This process maintains the
degree of each vertex and detaches the component from B. The detached component is a
connected cubic graph, since it may contain other 2-connected components. By marking
the added loop, we can see the detached component as an element in Q. By detaching
all such components, we obtain a graph B’ in ngzz’ whose edges are either already in
B or added during the procedure in Figure [6.20(b). For an edge in B’ that was not in
B, it may corresponds to several different components (see Figure [6.20|c)). We can thus
record them as a list of elements in Q, in the order that goes from the vertex with smaller
label to that of larger label. For edges of B that were already in B, we associate the
empty list. For simple edges in B’, this is the whole story, and we have the list LY. For
double edges in B’, since its two edges are indistinguishable, we have a multiset of two
lists for each double edge, which forms the list L?. A double edge d in B’ corresponds to
a double edge in B if and only if the corresponding item L7 contains two empty lists, that
is, nothing is inserted in either edges. It is for dealing with this case that we introduced
the unusual weighting scheme for the EGF of By, which is designed to make the total
weight invariant after the process above that disconnects components. We now have a
correspondence from G to (B’, LY, L*). To show that this process is injective, it suffices
to see that we can reconstruct G from (B’, LY, L*) by reversing the cutting operation
illustrated in Figure M(C) More precisely, to insert a component () into an edge e, we
first remove the marked loop of @), then insert the remaining vertex of degree 1 in the
middle of e. Since the reconstruction is possible, the correspondence is an injection, and
we have the upper bound.

For the lower bound, we only need to establish an injection from the set B;WZQ\BO to
ngzz. This set is formed by elements (B’, LY, L?) such that B’ is 2-connected, strongly
embeddable into S, with facewidth at least 3 but not planar. The injection is still provided
by the procedure described above, but this time we can uniquely determine (B’, LY, L?)
from G, because now G has only one 2-connected component that is not planar. We thus
have the lower bound.

O

Although in Proposition and Proposition [6.22] we can bound the EGF of a class
of cubic graphs of lower connectivity by another of higher connectivity, these bounds are
not exactly what we want. We need to enumerate the class C,4, but Proposition is
only valid for the class C£W>2, and we lack the part Cg“’:l. And in Proposition We
use B§W>2(x, y, z) to bound C;W>2(x, Y, z,w), but the bound in Proposition concerns
B;W>3(x,y, z), which does not include 2-connected cubic graphs of facewidth 2. The
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Figure 6.21: Altering edges on a 2-connected cubic graph of facewidth 2

following propositions fill up the gaps by giving an upper bound to the EGFs of the two
classes of cubic graphs at discrepancy. In both cases, we exploit the fact that the graphs
we count have small facewidth to break them into smaller graphs strongly embeddable
into surfaces with strictly smaller genus. In the following, by abuse of notation, we will
extend the coefficient-wise dominance relation < to multivariate Laurent series.

Proposition 6.23. For g > 1, we have

B§W‘2(x,y,z)52(y+2)2(;+y>2((5 +0:)* By (2., 2)

(6.31)

+ >, ((6,+6.)BY= (2,9, 2)) ((5y+5z)B§Z”>2(x,y,Z))>,

g1+g2=
91,92 >0

where 9, —g—aandé = 20
Yy 0z

Proof. 1t is clear that 2-connectivity and 2-edge-connectivity are the same in cubic graphs.
Indeed, if an edge is a separator in a cubic graph, then one of its vertices must be a cut
vertex. Conversely, if there is a cut vertex v, all its edges cannot be linked to the same
component, and since v is of degree 3, there must be at least a component that is linked
to v only by an edge e, which is a separator.

Let B be a cubic graph in B;W:z. By the definition of facewidth, there is an embedding
Mp of B with facewidth 2, i.e. there are two faces fi, fo whose union contains a non-
contractible circle C. We can choose C' to first cross from f; to fs, then from f; to fi. Since
B is a cubic graph, we can suppose that C' crosses edges instead of passing by vertices,
and let e; = {vy, w1}, €5 = {vg, wo} be the two edges that C crosses, such that vy, vy are on
the same side of C'. It is clear that e; and ey do not share any vertex, or else one of fi, fo
would already contain a non-contractible circle. The following construction is illustrated in
Figure Given the two edges, we first delete ey, €5 from B, then add e3 = {vy, va}, 4 =
{wy, ws} to obtain a cubic graph B’, coming with an induced embedding. These operations
can also be explained in terms of surgeries on dual triangulations. Consider the dual
triangulation M} of Mp, in which the dual edges e}, e form a non-contractible double
edge d. By first cutting along d then zipping the holes, we may obtain one or two
triangulations, whose dual is an embedding of B’.

Now, depending on the nature of C', there are two cases: either C is separating, in
which case B’ will contain two connected components; or C' is non-separating, then B’ is
connected. We now discuss the cubic graph B’ we obtain in these two cases.

In the first case, we obtain two connected cubic graphs B, By strongly embeddable
into Sy,, Sy, respectively, with g1 + go = g. We have g; > 0,92 > 0 since C is not
contractible. We mark the edges ez, e, on By and Bj respectively. We first prove that B
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is 2-connected. Indeed, let P be a path with in B linking two vertices u,v in By, then we
can modify P to give a path P’ in B; by replacing any sub-path in B\B; by e3. Since
B is 2-connected, we see that B is also 2-connected. By the same argument, Bj is also
2-connected. We now consider the facewidth. We can assume that the embeddings of
By and B, induced from Mpg are of minimal facewidth, since we can choose Mp freely.
Since B is of facewidth 2, no face in By, except fi, fo that are changed, cannot contain
any non-contractible circle. For f; and f,, we can see that the operation does not create
new non-contractible circles. Therefore, B; (and similarly By) is of facewidth at least 2.
We thus have an upper bound on the EGF of graphs By, By that we obtain in this case,
which is

Do (0 +0.)BYZ2(w,y, 2)) (6, + 0:)BE2 (2,9, 2)) .

g1+g92=g
g1,92>0

Here, since the marked edge can be simple or part of a double edge, we use d, + 0, to give
an upper bound of the EGF of these cubic graphs with marked edges.

In the second case, we obtain a connected cubic graph B’, strongly embeddable into
S¢—1, with marked edges e3, es. We denote by Mp its embedding derived from Mp. We
first prove that B’ is 2-connected. Suppose that e is a bridge of B’. The edge e cannot be
e3 nor e4. The faces on the two sides of e on Mp must be the same, or else their adjacent
edges would prevent e to be a bridge. Let f be the only face adjacent to e on Mp/, and
C, a circle in f that crosses e. We now consider C, in Mpg. Since we go back from Mpg: to
Mg by merging some faces, C, is well-defined on Mp. It cannot be contractible, or else e
would be a bridge in B, which contradicts the fact that B is 2-connected. It cannot be
non-contractible, or else Mp would have facewidth 1, which is impossible. Therefore, e
does not exist, and B’ is 2-connected. We now prove that B’ is of facewidth at least 2.
Since we have the freedom to choose the embedding Mp, we can assume that Mp has
minimal facewidth by choosing Mp accordingly. Suppose that there is a face f in Mp/ that
contains a non-contractible circle C. We can assume that C' crosses only one edge e, which
is adjacent to f. Then by the same argument as above, C' is either contractible in Mp,
which contradicts the 2-connectivity of B, or non-contractible in Mpg, which contradicts
the fact that fw(B) = 2. Therefore, such a circle cannot exist, and the facewidth of B’ is
at least 2. We thus have an upper bound of the EGF of B’ with marked edges, which is

(0, + 6.)° BT (3, y, 2).

Here, by the same reason as in the previous case, we use d, + 0, for the marked edges.

We now explain the factor 2(y + z/y)*(1/y + y/z)?, which accounts for the change
from cubic graphs with marked edges to cubic graphs in B;W:2. The factor 2 accounts
for the fact that there are two ways to reconnect e; and e; given the marked edges e3, ey.
The deletion of e (respectively es) may either eliminate a simple edge or turn a double
edge into a simple edge, and its effect on the EGF is bounded from above by the factor
(1/y+y/z). The addition of e; (respectively es) may either add a new simple edge or turn
an existing simple edge to a double edge, and its effect on the EGF is bounded from above
by the factor (y + z/y). We thus have the upper bound of B;W:Q(x, y,2) in (6.31)). ]
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Figure 6.22: Altering edges on a connected cubic graph of facewidth 1

Proposition 6.24. For g > 1, we have

ctamem = (12) ((82) @ steno

wo
+ 1; ( g1 :B y U, 2, ’UJ)) (%ng(x,y,Z,w)) )

91,92 >0

(6.32)

Proof. Let G be a cubic graph in Q;W:I. By definition of the facewidth, there is an
embedding Mg of G with facewidth 1, i.e. there is a face f that contains a non-contractible
circle C', which can be assumed to cross only one edge e. We first suppose that e is a loop,
and let v be its adjacent vertex. Since G is cubic, v is adjacent to only one edge other
than e, and one side of the loop e is thus a face of size 1, which makes C' contractible
and contradicts our assumption. Therefore, e cannot be a loop, and we denote by vy, vy
its adjacent vertices. We now perform the following operation illustrated in Figure [6.22;
we first delete e, then for v; and vy, we attach on each vertex a new edge leading to a
new vertex with a marked loop. On the embedding Mg, this is done by first adding the
circle C' as an edge and its crossing with e as a vertex, then cutting along the loop C' (see
Figure .

Now, according to the nature of C', there are two cases: either C is separating or not.
If C' is separating, we obtain two connected cubic graphs G1, G5 strongly embeddable into
Sg15Sg, respectively, with g1 + g2 = g and ¢; > 0,92 > 0. Both G;, G2 contain a marked
loop. If C' is non-separating, we obtain a connected cubic graph G’ strongly embeddable
into Sy_1. The EGF of cubic graphs obtained in this way is thus bounded from above by

wd\? wo wo
<au]) Cg—1($,y727w> + Z (au)Cgl(‘ruwaaw)) <aujcgz(x7yaz7w)) .

g1+g2=g
91,92>0
Here, the differential operators are for marking loops.

To go in the reverse direction, we only need to delete the two marked loops, their
adjacent vertices and the edges adjacent to these vertices, and then add an edge between
the two vertices of degree 2 that remains. In other words, we first delete two vertices, two
loops and two simple edges, which accounts for the factor (xyw)2. We then add a new
edge, which may be a new simple edge or turn an existing simple edge into a double edge.
Its effect on the EGF is bounded from above by the factor (y + z/y). We thus have the
upper bound of C*=" in (6.32). O

Later, we will use Proposition and Proposition to show that the number of
multigraphs with small facewidth is negligible compared to their counterparts without
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restriction on facewidth. Now the only thing missing on the path to push asymptotic
enumeration results from 3-connected cubic graphs to connected cubic graphs is the ex-
pressions of the unknown series N°(z,y, z) of networks (used in Proposition and
Q(z,y, z,w) of connected cubic planar graphs rooted at a loop (used in Proposition .
Similar expressions of the series of networks and connected cubic planar graphs rooted at
a loop keeping track of fewer statistics are already obtained in [102, 118], and with minor
modifications of weights in the arguments in [102], we obtain the following expressions of
N°(z,y,2) and Q(z,y,z,w). In the following proposition, we will temporarily omit the
arguments of generating functions.

Proposition 6.25. The generating function Q(z,y, z,w) of the class Q satisfies

2,3 2
Q = ny A+ 7 +x2y2w,
A=Q+S+P+H,
A2
S=——
A+l (6.33)

2,3
p-2Y 23/ A% 4+ 223 A 4 2Py,
2H(1+ A)=U(1-2U)-U(1-U)?
2y (1+ AP =U(1-U),

where A, S, P, H,U are all formal power series in the variables x,y, z, w.
The generating function N°(xz,y, z) of the class N° satisfies

N° = ; (V(1—2V) —2®y(y® —22)(1+ N°)),

2y (1+ N = V(A -V)?,

(6.34)

where V' is a formal power series in variables x,y, z.

It is worth mentioning that the series Q(z,y, z, w) and N°(x,y, z) are algebraic, which
is a rare situation for series of graphs. In comparison, similar series in the setting of
general planar graphs are not algebraic (cf. [76]).

As in Section 3 of [102], the proof of (6.33) relies on a recursive decomposition of
edge-rooted connected cubic graphs. The only difference is that we account properly for
loops and double edges in the initial conditions in a way that is appropriate to our needs.
To give readers some ideas on how the decomposition works, we will just describe the
possible cases of the decomposition. Let GG be a connected cubic graph rooted at an edge,
i.e. with a marked and oriented edge. There are five possibilities of the placement of the
root:

1. the root is a loop;

2. the root is a bridge;

3. the root is part of a minimal edge separator of size 2;
4. the vertices adjacent to the root separate the graph;

5. the root is part of a 3-connected component.
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It is shown in [I02] that the list above is exhaustive. We then assign a graph class for
each case, and we see that the first case corresponds to the class Q. For the first four
cases, we can decompose the graph by deleting the root and its adjacent vertices in an
appropriate way, which can be used to write functional equations. The last case involves
a more complicated parametric equation for H in terms of U. The detail proof is omitted
here.

As a remark, although the recursive decomposition above for edge-rooted connected
cubic graphs and the Tutte decomposition for the enumeration of maps share the same
idea of deleting the root, they are of very different nature. In the case of maps, the
extra embedding information tells us that the root deletion can be treated as merging
or splitting faces, which leads to simple functional equations with one catalytic variable
marking the degree of a special face (the outer face). In the case of graphs, we do not
have such information. It is thus difficult to construct a recursive decomposition that is
bijective for enumeration, since the root may potentially connect any two vertices in the
graph. We must resort to extra information, such as connectivity, for a decomposition
of graphs. Indeed, the recursive decomposition of edge-rooted planar cubic graphs above
relies on the decomposition along connectivity of graphs, the unique embedding theorem
of Robertson and Vitray (Theorem and the enumeration of cubic planar maps, which
can be seen in how the cases are split.

To obtain (6.34), we start with (6.33). Since N° is the class of 2-connected planar
cubic graphs with a marked and oriented edge (thus rooted), Case 1 and Case 2 in the
decomposition above never occurs. By suppressing these cases, we can obtain a system
that simplifies into (6.34)).

Although these systems of equations does not allow us to express Q(x,y, z, w) and
N°(z,y, z) in a simple explicit form, they are sufficient for asymptotic enumeration, which
is what we need.

6.7 Asymptotic enumeration of cubic graphs

In this section, we will use asymptotic analysis to obtain the asymptotic behavior of the
generating function Cy(v) of connected cubic graphs of genus g, which is then used for the
asymptotic enumeration of general cubic graphs. Our analysis builds on various bounds,
expressions and systems established in the previous sections. In the following, we will
specialize previous results to generating functions in the variable v. We recall that, for
a formal power series F'(x,y, z, w), the corresponding function F(v) is the specialization
F(v) = F(x, = vy, = 00 2, = v'/3/2 w, = v¥/%/2). We can see that the specialized
variables are closely related, for instance z, = y2/2 and w, = y,/2. Using these relations,
we can establish the following lemmas, which will be useful to reduce differentiation with
respect to other variables to that of v.

Lemma 6.26. Let F(x,y,z,w) be a formal power series in x,y,z, w with non-negative

coefficients. We have
wo yo vy
—F < | F .z ) )
((311) (x,y,z,w)) 2y 0y < (x,y, 272 (6.35)
2 2

Let F(z,y,z) be a formal power series in x,y,z with non-negative coefficients. We

have - ; )
z Y Y
—F (| F Z ) )
(az (-’r,y,Z)) e =2, ( (xy 5 )) (6.36)
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Let F(x,y) be a formal power series in x,y with non-negative coefficients formed by
monomials of the form x?*y3*. We have

322%(@) - (ng(x y))

Proof. The first two relations and are of the same flavor and are rather
straight-forward. We now only analyze , and it should then be clear for @ We
take F'(z,y,z) = 2°y’2° a monomial and substitute it into both sides of (6.36). On the
left-hand side, we obtain cx%y®(y?/2)¢, and the right-hand side becomes (b+2c¢)z%°(y?/2)¢,
and we clearly have the coefficient-wise dominance relation. Since the relation holds for
each monomial, it also holds for formal power series with non-negative coefficients.

The third relation can be proved by a straight-forward computation. Since
F(z,y) is formed by monomials of the form 2y, we have 32 F(z,y) = Z%F(x,y),
therefore,

(6.37)

z=v1/4 y=01/6

v0 O0F (z,y) oz 0F (z,y) dy
U Py) = SEAd) O EAm I Yy
3 (v) (3U 5 o 3v 3 o

v
_ (301/46F<w,y> . 1U1/66F<x,y>>

r=vl/4 y=o1/6

4 ox 2 oy

(gren)

As a remark, the substitutions in and will appear in our study of gen-
erating functions in v. Indeed, in the specialization F'(v), we always have z, = y2/2 and
wy = Y,/2, and later we will first do the substitution z = y?/2 and w = y/2 as in ([6.35))
and in the generating functions of cubic graphs. We also remark that these sub-
stitutions will lead to formal power series satisfying the restrictions of . Therefore,
the restriction on the formal power series for will always hold for our case.

We now proceed to the analysis of asymptotic behaviors of generating functions in v.
We start by the generating function N°(v) of the class N°.

r=v1/4 y=p1/6

]

r=v1/4 y=p1/6

Proposition 6.27. The dominant singularity of N°(v) occurs at py = @ Furthermore,
P g Y P 7
N°(v) is A-analytic, and near its dominant singularity, we have
o 1 ol -1 17°7 —1,\3/2 —1.\2
N(U)—E—m(l—PNU)ﬂLm(l—PNU) + 0 ((1—pp'v)?).

Proof. By first eliminating v from ([6.34]) and then performing the substitution of variable
as in ([6.25)), we obtain the following implicit equation for N = N°(v):

0 = 160 N°® + v(32 + 96v) N° + (16 + 56v + 2400*)N* + (24 — 25v + 3200*)N?
+ (12 — 91v + 2400*)N? + (2 — 43v + 96v*) N — v(1 — 16v).

We can then use standard methods of singularity analysis of general algebraic func-
tions (see [69, Section VII.7.1]) and preferably a computer algebra system to determine
the dominant singularity py of N°(v) and its expansion near py. The discriminant is
1024v°(4913v — 432)3(729v? + 16). The root v = 0 is not a dominant singularity, since the
dominant coefficient is 1602, which becomes 0 when v = 0. But by Pringsheim’s Theorem,
N must have a dominant singularity that is real. Therefore, its dominant singularity has
to be py = 232 The asymptotic behavior can be easily computed using a computer

4913°
algebra system. O]
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Using a similar approach, we can also obtain the asymptotic behavior of Q(v). We
omit the proof of the following proposition.

Proposition 6.28. The dominant singularity of Q(v) is pg = 795?/2. Furthermore, Q(v)
is A-analytic, and near pg we have

Qv) = g0 — a1(1 — pg'v) + g2 (1 — pg'v)*? + O (1 — pg'v)?)

where
T 189 79232352
=750 M T 99879 BT T 19952

Knowing the dominant singularities and asymptotic behaviors of Q(v) and N°(v), we
are now ready to analyze the functions B,(v) and Cy(v).

Proposition 6.29. For all g = 0, the dominant singularity of the power series B£W>2(v)

is the same py = 23* as that of N°(v). The power series BY>*(v) is A-analytic and

17
satisfies
BNZ2(v) = ag + a1(1 — py'v) + as(1 — pyto)? + do(1 — py'v)>? + O ((1 — p]\,lv)3) ,
where ag, a1, as,by are constants. Furthermore, we have

Bv=2(y) ~

fw>2
By (v)

dy log(1 — py'v) + O ((1 — pylo)'/h),
dg<]- _ pJ—Vlv)—5(g—1)/2 +0 ((1 _ p&10>—5(g—1)/2+1/4) . Yg=2.

lle

Here, all dg,’s are constants.

Proof. For the planar case g = 0, since planar graphs have infinite facewidth, we have
Bi"?(v) = By(v). We observe that networks are just edge-rooted 2-connected cubic
graphs. Therefore, we can directly relate By(x,y, 2) to N°(x,y, z) by

2

0 0
NO($7y7 Z) = 2?;yB0(x7y7 Z) + 2%7B0(37,y,2)-

With the substitution z = y?/2, by a simple computation, we have

2 d 2
N* (95,3/7%) = ZZy (BO (l‘,y, yz)) .

By substituting = = x(v) = v'/* and y = y(v) = v'/6, we have

dv.

v’ NO(U>dy(U) B v’ NO(U)

By(v') = =
o= 2 o 16v

We thus conclude by an integration from Proposition [6.27], whose validity is guaranteed
by the fact that N°(v) is A-analytic.

For the non-planar case g > 1, we first look at D=3 (x,y) = Dy¥=3(x, y(1+N°(z, y, 2)))
in Proposition @ Since D£W>3(x, y) is the EGF of a class of cubic graphs with only

simple edges, it is formed by monomials of the form z?"y*", which become v™ under the
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change of variable in 6.25. Therefore under the same change of variable, D£W>3($, )

becomes D=3 (v(1 + N°( , and - ) becomes
DI=* (v(1 + N°(v))*) — Dy (v(l + N°(v))*) < B3 (v) < DIY2* (v(1 + N°(v))?) .

(6.38)
The dominant singularity of D{">3(v(1 4+ N°(v))?) either comes from the dominant sin-
gularity pn of N°(v) or from a solution of v(1 + N(v))? = pp not larger than py, where
pp = p3 is the dominant srngularrty of DfW>3(U). By verifying their values in Proposi-
tion E 7| and Proposition we have pN(l + pn)® = pp. Therefore, v = py is also
a solution of v(1 + N(v )) pD Furthermore, it is also the unique solution within
[0, pn], since v(1 + N(v)) is strictly increasing on [0, px]. We thus conclude that py is
the dominant singularity of Df*>?(v(1+ N°(v))?), and the composition is critical (cf. [69,
Section VI.9]). By Proposition [6.20] Proposition and the fact that v(1+ N°(v))? has

only non-negative coefficients, we have
D=3 (u(1+ N°(v ))3) = do(1 = p'v)*? + O (1= pi'v)?)
D3 (u(1 + N°(0))*) = dy log(1 — py'v) + O (1 — pi)*)
for g =0 and g = 1. Then for all g > 2, we have
D§w>3 (v(l + N°(v)) ) ~ dg(l . p&lv)_5(g_1)/2 +0 ((1 — p]_\,lv)_5(g_1)/2+1/4) '
Combining with (6.38)), we have
B (v) = dylog(1 — py'v) + O (1 — py'v))
B;W;:),(v) ~ d,(1— p]fvlv)fS(gfl)/Q L0 (( — N v) 5(971)/2+1/4) Vg =2

To conclude the proof, it suffices to show that BIN=*(v) = B{*>?(v) — Bi¥>*(v) can be
absorbed in the error term, namely

By () = O ((1 = py'o) o) (6.40)

We proceed by induction on g. The base case g = 0 is trivial, since Bfw 2(v) = 0 in this
case. We now suppose that (| - ) holds for all genera ¢’ < ¢, and we wrll prove that it
also holds for genus g.

We first perform the substitution z = y?/2 on in Proposition m By replacing
the differential operator z0/0z by yd/dy using in Lemma to loosen the upper

bound, we have

Bfw=2 yf <9 ( y) - “ 4 BfWZQ J
g (xaya 2)— y+2 y+y ay g—1 z,Yy, )
2 a 2
Z Bfw>2 Y 22/ Bfw=>2 y '
" g1+g2= ( (mjy7 2 ay - o 2

g1, gz>0

(6.39)

We now perform the change of variable z = v'/*,y = v'/% to obtain a bound on B"=%(v),
using in Lemma [6.26] to replace yd/dy by vd/dv after the substltutlon By the
deﬁnition of BfW %(z,y), its coefficients are clearly non-negative, therefore 7)) applies.
We thus have

fw=2 2 o4 (N (e [ —
By (o) < 2230 | B (v) + > <de§1 (v)) (de @)) . (6.41)

g1+g92=g
91,92>0
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By induction hypothesis and (6.39)), for all ¢’ < g, we have

Y pva(0) = 0 ((1 = i) 599

We also have

2

Substituting the two congruence relations into (6.41]), we have
B;WZ2(U) <0 ((1 o p;[l,u>—5(g—l)/2+1/2) ’

which implies (6.40). By induction, the relation ((6.40]) holds for all g > 0, which concludes
the proof. O

As a corollary, we can obtain the asymptotic enumeration of weighted 2-connected

cubic graphs with facewidth at least 2, using the transfer theorem (Theorem [2.6) on
BfWZQ.
9

Corollary 6.30. The asymptotic number of 2-connected vertex-labeled weighted cubic
graphs strongly embeddable into S, with facewidth at least 2 and 2n vertices is given by

(277,)![1)”]3;‘”22(1)) =(2n)!(1+0 (n_1/4)) cnPo= D21 o
Here, the constant c, depends only on the genus.

We now proceed to the asymptotic analysis of the series Cy(v) for connected cubic
graphs, using the result on the 2-connected series B,(v) we just obtained. This asymptotic
analysis leads to the following result whose proof has a structure very similar to that of
Proposition [6.29]

Theorem 6.31. For all g = 0, the dominant singularity of the power series Cy(v) of
connected vertez-labeled weighted cubic graphs strongly embeddable into Sy is the same
P = % as that of Q(v). The power series Cy(v) is A-analytic, and satisfies

Co(v) = ag + ai (1 — pg'v) + ay(l — pg'v)? + dy(1 — pc_2111)5/2 +0((1—pg'v)?),
where ay, a), ay, dy are constants. Furthermore, we have

Cl (U)
Cy(v)

lle

c1log(1 — pélv) +0 ((1 — pélv)m) )
Cg(l _ pélv>f5(g71)/2 +0 ((1 _ pélv)75(gfl)/2+l/4) Vg = 2.

lle

Here, d,, is a constant that only depends on g.

Proof. The planar case ¢ = 0 can be obtained by unrooting the class of edge-rooted
connected planar cubic graphs, which can be expressed as a sum of the classes in .
The proof is omitted here, and readers are referred to [24] or [102] for more details.

For the non-planar case g > 1, we first look at

B™22(z ¢,2) = B™>? ( « Y v + 2z — v
T g "1-Q(x,y, z,w) 2(1 — Q(x,y, z,w)) z
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as in Pr0p0s1t10n E Since Bf‘”>2(:v y,z) is the EGF of a class of cubic graphs with
Slmple and double edges, it is formed by monomlals of the form 2%"y?"~22* which become
27%™ under the change of variable in . Therefore, under the same change of variable,
B¥>2(x,7, Z) becomes B"Z?(v(1 — Q(v))_3), and ([6.30)) becomes

B2 (u(1 - Q(v)™*) — Bo (v(1 — Q)™ = (1) < B2 (u(1 — Q(v)) ™). (6.42)

The dominant singularity of B{*>*(v(1 — Q(v))™?) either comes from the dominant sin-
gularity pg of Q(v) as in Proposition | or from a positive solution not larger than pg
of v(1 —Q(v))™2 = py or Q(v) =1, where py is the dominant singularity of Bj*=?(v).

By Proposition and Proposmon we verify that po(1 — Q(pg)) ™ = pn. Since

Q(v) is a power series without constant term but with positive coefficients, v(1 — Q(v))™3

is thus also a power series with positive coefficients, which implies that v(1 — Q(v))™3 is

strictly increasing in [0, pg]. Therefore, v = pg is the only solution of v(1—Q(v))™ = py
in [0, pg]. We also know that QQ(v) = 1 has no solution in [0, pg], since Q(v) is strictly
increasing in this interval, and Q(pg) = ¢o < 1 according to Proposition . Therefore,
v = pg is the dominant singularity of BfW>2( (1-Q(v))~?), and the COHlpOSlthl’l is critical

(cf. |69, Section VI.9]). By Proposition and Proposition 6.28 we have
—Qv)7?) = dy(1 = pg'v)* + O (1 = pg'v)?’)
— Q)) = dilog(L - pg'v) + O (1 - pg'v)'")
for g =0 and g = 1. Then for all g > 2, we have

B§w>2 (01— Q))™®) = d (1 - pélv)fS(gfl)/Z Lo((1- pélv>75(g71)/2+1/4) '
Combining with (6.42)), we have

CP=2(v) = dilog(1 — pg'o) + O (1 = pg'v)"?),

6.43
C’;WZQ(U) ~ d’g(l — pélv)"r’(g*l)/z +0 ((1 — pélv)’f’(g’l)/?“/‘l) Vg = 2. ( )

To conclude the proof, it suffices to show that C¥='(v) = Cy(v) — CI¥>*(v) can be
absorbed in the error term, namely

ng:l ~0((1- pélv)75(971)/2+1/4) . (6.44)

We proceed by induction on g. The base case g = 0 is trivial, since wa— (v) = 0 in this
case. We now suppose that (| - ) holds for all genera ¢’ < g, and we will prove that it
also holds for genus g.

We first perform the substitutions z = y?/2,w = y/2 on in Proposition :6.24.
Since C;Wzl(x,y,z,w) is the EGF of a class of cubic graphs, we can apply @D in
Lemma [6.26] to get a relaxed upper bound. We thus have

= (1258) 2 D () (5 (50)
Sl A CYC ) [ECA )

g1 92>0
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We now perform the change of variable z = v*/*,y = v'/® to obtain a bound for C™=!(v).
Since C;Wzl(x,y, z,w) is the EGF of a class of cubic graphs, it has non-negative coeffi-
cients, and so does C}*="'(v). We can thus use in Lemma M to replace yd/dy by
vd/dv after the change of variable, which gives

d vd vd
fw—1 ot | Yo ' - . 4
e =i | Goma s B (G0 ) (3Cat) (6.45)
g1,92>0

It is clear that the right-hand side is also a formal power series, without singularity at
v = 0. By induction hypothesis and (6.43)), for all ¢’ < g, we have

Ld _ =1, \-5(¢'-1)/2—-1
“Cy(v) = 0 ((1 pa'v) ) .

We also have )
d
v
Substituting the two congruence relations into (6.45)), we have

C«;W:l(v) <0 ((1 - pélv)—5(g—l)/2+l/2) ’

which implies ((6.44)). By induction, the relation ({6.44]) holds for all g = 0, which concludes
the proof. n

We can obtain the asymptotic enumeration result on connected weighted cubic graphs
as a corollary in a similar way as in Corollary [6.30]

Corollary 6.32. The asymptotic number of connected vertezx-labeled weighted cubic graphs
strongly embeddable into S, with 2n vertices is given by

(2n)![v™]Cy(v) = (2n)! (1 + O(n'/*)) cgn5(g_1)2_1pé".

Here, ¢, is a constant depending only on g, and pg = 7;’%.

We are now finally ready to prove our main result in this chapter, Theorem [6.5, We
denote by W, the class of vertex-labeled cubic graphs strongly embeddable into S,. We
recall that a cubic graph in W, is not necessarily connected, and such a cubic graph is
said to be strongly embeddable into S, if the genera of its connected components sum up
to g. Since a cubic graph always has an even number of vertices, we can define the EGF
Wy (v) of W, as

v #vertices/2

Wolv) = Z (#vertices)!2

GeWy

—#double edges—#loops 6~ #triple edges

The number w,(n) of such weighted vertex-labeled cubic graphs with 2n vertices is thus
simply the coefficient (2n)![v™|W,(v). By analyzing the behavior of W,(v) near its domi-
nant singularity, we can obtain the asymptotic behavior of wy(n). Since a cubic graph in
W, can be seen as a set of connected cubic graphs, we can use Cy(v) to express Wy(v),
or at least to bound it.
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Proof of Theorem [6.5, By the definition of W,, we have

<2, X kl,ﬁ (Cgi(v) + %) : (6.46)

k=>1g1++gr=9  i=1

The term v/6 stands for the special cubic graph formed by a triple edge, which is not
presented in any C,. Here we only have an upper bound instead of an equality, because
the same cubic graph can be strongly embeddable into surfaces of several genera, giving
rise to multiple presence in different classes of the form C,. Later, we will establish a
lower bound that matches the asymptotics of the upper bound.

For the planar case g = 0, since there is no over-counting in this case, becomes
Woy(v) = exp(Co(v) + v/6), which coincides with Theorem 1 of [I02]. We can thus easily
conclude the proof in this case by a substitution.

We now deal with the non-planar case g > 1. We first single out all planar components
to obtain

ig Z+ /i!ﬂ(cgl'(“H;)Z(ki!j)! (Gol0) +5).

It is clear that W,(v) is singular at v = pg, which is the dominant singularity of all
Cy(v)’s. Since Cy(pg) is finite, we can see that the term representing planar components
can at most contribute a constant factor cpjanar for any v of modulus at most pg. We thus

have
V) < Cotunar Zg] > o H (Coto ) . (6.47)

k=1g1++gx=g '1—
gi=1

Since this is a finite positive sum, the dominant singularity W,(v) is also at v = pg. For
a given sequence g, ..., gy, we define

o 1 i v
A(gl,...,gk) = E 1_[ (ng (U) + 6) :
Ti=1

We now only need to find the sequences g, ..., g, that lead to a predominant A, . 4.)-
For g = 1, there is only one possibility £ = 1 and g; = 1, and the only term that

appears in (6.47) is C(v), which only appears once. By Proposition [6.31] we have
Wy(v) < Pi(v) + dj log(1 — pélv) +0 ((1 — pélv)m) ,

where P;(v) is a polynomial in v, and d; is a constant.

For ¢ > 2, without loss of generahty, we can choose the sequence ¢y, ...,gr to be
decreasing. Suppose that ¢y = --- = go = 1 are the g;’s that are equal to 1. We then have
_ 1 _
A an) = (1 +0 ((1 - lev)1/4)) ik (log (1-— pQ H Cqi (1 —5(g:=1)/2
i=0+1

= dig..g0) (1+ 0 (1= pg'v)'")) (log(1 — pélv))e (1= pglv) 2072,

Here d(g, .. g,) is a constant.
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For the case k = 1 and g; = g (thus ¢ = 0), we have

Ay = Cy(v) + g co(1 = pg'v) D2 4 O ((1 = pglo) oo D)

For other sequences with k£ > 2, we have
Algrng) = O (1= pglo) 7207022y,
Therefore, the term A, is indeed dominant, and we have
Wg('U) < 69(1 . pélv)—S(g—l)/Z +0 ((1 o pélv)—S(g—l)/2+l/4) :

where e, = ¢, > ﬁ (Co(v) +v/6).

We now construct a lower bound for W, (v) for all g > 1. Let Wg be the subclass of
W, consisting of cubic graphs with one component of genus g and all others planar. We
denote by Wg(v) its EGF. The choice of Wg comes from the intuition that, in the sparse
regime of random graphs, if there is a giant component, all other connected components

ought to be mostly trees and unicycles, which are all planar. We thus have

> (Gt + 2) = Wy(0)

j>o(j'+ 1)!
1 v

=G0 Y (ot +5) - ;) 8:11)), (G +2)-

Indeed, the only possibility that we count an element of Wg multiple times in the upper
bound of Wg is when its component of genus ¢ is also planar. In this case, there will be
at most j + 1 choices of the component of genus g, if there are j + 1 components. By
subtracting the generating function for this case, we obtain the lower bound. We thus
have

W) = W) = C0) Y o (o) + ) = 2 9 () + ).

=G +1) =G+

We can see that the term we subtract is finite at the dominant singularity pg. Further-
more, the other term is predominant in the upper bound. Therefore, the two bounds
match, and with a certain constant e, we have

Wg(v) ~ eg(l _ pélv)_5(g_1)/2 +0 ((1 o pélv)—5(g—1)/2+1/4) ‘

We conclude by applying the transfer theorem (Theorem to extract the asymptotic
behavior of the coefficients w,(n) = [v"|W,(v) of Wy (v). O

As we have mentioned above, with minor modifications, our method can also apply to
the enumeration of cubic graphs without weight and simple cubic graphs. We have also
obtained asymptotic enumeration results in these cases.

In the perspective of random graphs, our main theorem (Theorem [6.5)) is a first step
towards the study of random graphs embeddable into S, with a given g. As we mentioned
at the end of Section [6.I] our main motivation is to study random graphs embeddable
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into S, in the sparse regime p < 1. Even with constraints on embeddability, the kernel
of a random graph in this regime does not deviate too much from being cubic. We can
thus obtain the generating function of these graphs by appropriate variable substitutions
to the generating function of cubic graphs. We can thus study the structure of random
graphs embeddable into S, with a fixed genus g. We are starting to look into random
graphs in this direction, and we expect to find a second phase transition as the one found
in [I02] for the planar case.
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Chapter 7

Towards the uncharted

Wir missen wissen — wir werden wissen!
(We must know — we will know!)

— David Hilbert

In previous chapters, we have seen some enumeration results on maps and related
combinatorial objects. These results are obtained using methods that vary from the
algebraic ones such as characters and functional equations, to the bijective ones such as
bijections and surgeries, and to the analytic ones such as asymptotic analysis. I hope that
I have well conveyed the richness of combinatorial maps in their relations to other fields
of mathematics, in the variety of methods, and in its applications to other enumerative
problems. Nevertheless, what we have seen is just the tip of an iceberg. There are still a
handful of prominent aspects about maps that were not treated in my thesis.

Such important but untreated topics include random maps and statistic physic models
(for instance the Potts model and fully-packed loops) on maps. These topics are more in
the realm of probability than combinatorics, though they are also closely related to the
asymptotic enumeration of maps, and use some of the tools we have talked about in the
previous chapters. It is thus interesting to explore these related subjects to see how to
transfer ideas and methods between different domains related to map enumeration.

Another topic that was not treated is the enumeration of non-orientable maps, i.e.
graph embeddings on non-orientable surfaces. Non-orientable maps are more difficult
to capture than orientable maps due to a lack of a common orientation. Some of the
methods that we have previously seen still apply, for example, it is still possible to write
and solve Tutte equations for non-orientable maps with only minor tweaking (cf. [7) [73]
74]), and some bijections for maps on orientable surfaces can be naturally extended to
non-orientable cases (c¢f. [41]). However, the representation-theoretic approach to the
enumeration of non-orientable maps becomes much more difficult, due to a radical change
in their rotation systems. These rotation systems are now defined in a more complicated
algebraic structure called the double coset algebra of the symmetric group, due to a lack
of global orientation in the map (c¢f. [82]). Non-orientable maps are thus related to
deeper topics in the study of symmetric functions, such as zonal polynomials and Jack
polynomials (c¢f. [82, 81, 106}, 56]).

Even for topics treated in the previous chapters, there are still many open problems
to be explored. We now reiterate several of these problems, alongside with some new
problems that may be farther from our reach.

209
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Generalized quadrangulation relation (Chapter 3)

Given the simplicity of the relation in Corollary [3.11] is it possible to give a bijective proof?
We should however keep in mind that the original quadrangulation relation, even in its
simplest form, has resisted all attempts for a bijective proof in full generality. Therefore,
it seems to be more difficult to find a bijective proof for our generalization. But in our
generalization, there are some non-negative coefficients Cl(gf?..,km_p which may have some
combinatorial meaning that can be exploited in the search of a bijection.

Enumeration of constellations (Chapter 4)

In the resolution of the planar case, we used the differential-catalytic method developed
n [30] for the enumeration of intervals in the m-Tamari lattice. Why is this method
also effective on the Tutte equation that we have written? The functional equations for
the generating functions of planar constellations and m-Tamari intervals have a vague
resemblance, for example they both contain a flavor of divided difference operator, and
they have operators iterated an arbitrary number of times. Are there other interesting
combinatorial classes whose generating function satisfies a similar functional equation
which allows the same method to be applied? Which kind of functional equations can
we solve using the differential-catalytic method? Since the functional equations of both
m-constellations and m-Tamari intervals seem to be closely related, can they be described
in a unified framework?

Bijection between intervals in generalized Tamari lattice and non-separable
planar maps (Chapter 5)

We have discussed how the map duality on non-separable planar maps is transferred to
an involution in the set of intervals in generalized Tamari lattice. Are there other corre-
spondences for other symmetries and statistics? For example, changing the orientation
of the root edge in a non-separable map gives an involution on the map side. What is
its counterpart on the Tamari side under our bijection, and does it have interesting prop-
erties? These questions can be asked for many other symmetries and statistics, most of
which may not be of great value, but there may still be interesting correspondences.

If we zoom out from objects (maps and intervals) to relations between objects, we
can see that it is possible to define relations on the class of non-separable planar maps
by lifting existing relations on the class of intervals in generalized Tamari lattices. For
instance, we can define a partial order on intervals in generalized Tamari lattices by
interval inclusion, which can be then lifted to a partial order on non-separable planar
maps. Is this partial order interesting? A lot of other structures such as Hopf algebras
can be built upon the Tamari lattice and its generalizations (c¢f. [112, 114]), are there any
lifting of these structures to the maps side that would be interesting?

Besides the relatively specific questions that are directly related to the work in the
previous chapters, we can also ask “big questions” in the field of map enumeration. The
“big question” that fascinates me the most is the following:

Question: Can we understand, in a purely combinatorial way, results and methods that
come from deep algebraic structures, such as characters of the symmetric group and
the KP hierarchy? Conversely, how can we translate map bijections into the algebraic
language of factorizations in the symmetric group S,, and what do they imply in the
algebraic study of S,,?



211

In my humble opinion, this question is intriguing and important, yet barely explored.
It is actually about the interaction between the two descriptions of maps: the topological
description of maps as graph embeddings and the algebraic description of maps as tran-
sitive factorizations in the symmetric group. A better understanding of this interaction
will lead to a transfer of techniques between bijective and algebraic study of maps, in the
form of new types of bijections or non-trivial theorems about irreducible characters of S,
and symmetric functions.

Of course, the question above is somehow vague, but we can point out concrete in-
stances that are interesting. For example, as stated above in the open problems related
to results in Chapter 3, is there a bijective proof of the quadrangulation relation and
our generalization to constellations and hypermaps? Since our proof of the generalized
quadrangulation relation essentially relies on a character factorization theorem of Little-
wood, if an independent bijective proof exists, it must somehow “act out” bijectively the
character factorization. Such a bijection will lead to a better understanding of the role of
characters factorization in map enumeration. Another example is the simple recurrences
on triangulations [84] and quadrangulations [36] obtained via differential equations in the
KP hierarchy. Here, a bijective proof would lead to more combinatorial insight of these
differential equations, and eventually to new recurrences of the same type, alongside with
new bijections. For instances in the other direction, we can analyze well-known bijec-
tions in map enumeration under the framework of rotation systems to see if they lead to
interesting transformations of permutation factorizations in .S,,.

Readers familiar with map enumeration may comment that these concrete instances
are all rather difficult to solve, which undermines the practicality of pursuing the research
direction indicated by our big question. Indeed, as we have mentioned, the original quad-
rangulation relation was published more than 20 years ago, and a bijective explanation is
known only in special cases. The recurrence on triangulations, being much more recent,
shares the same situation. But there are also successes in this direction. The Harer-Zagier
formula and the Harer-Zagier recurrence for unicellular maps were first obtained in [92]
using matrix integral techniques, which are based on the rotation system representation
of maps. At that time, they were as mysterious as the quadrangulation relation. But
later, combinatorial interpretations and bijective proofs of both relations were discovered
[108, 86, 43], and many interesting bijections were invented during this exploration of
combinatorial interpretations of these algebraic relations (c¢f. [40, [19]). The Harer-Zagier
formula and recurrence thus set a precedence of success in the pursuit of clarification of
the interaction between the two descriptions of maps. If we can solve a lot of these con-
crete instances of the big question, we may be able to puzzle up a more complete view of
how the embedding description and the rotation system description of maps interact. For
now, it is still a largely uncharted territory to be explored, in the amazingly rich domain
of map enumeration.



212 CHAPTER 7. TOWARDS THE UNCHARTED



Bibliography

1]

[10]

[11]

[12]

[13]

M. Albenque and D. Poulalhon. A generic method for bijections between blossoming
trees and planar maps. FElectron. J. Combin., 22(2):Paper 2.38, 44, 2015.

Réka Albert and Albert-Laszl6 Barabasi. Statistical mechanics of complex networks.
Rev. Modern Phys., 74(1):47-97, 2002.

J. Ambjorn and T. G. Budd. Trees and spatial topology change in causal dynamical
triangulations. J. Phys. A, 46(31):315201, 33, 2013.

J. Ambjern, B. Durhuus, and T. Jonsson. Quantum geometry. Cambridge Mono-
graphs on Mathematical Physics. Cambridge University Press, Cambridge, 1997. A
statistical field theory approach.

O. Angel. Growth and percolation on the uniform infinite planar triangulation.
Geom. Funct. Anal., 13(5):935-974, 2003.

O. Angel and O. Schramm. Uniform infinite planar triangulations. In Selected works
of Oded Schramm. Volume 1, 2, Sel. Works Probab. Stat., pages 547-569. Springer,
New York, 2011.

E. A. Bender and E. R. Canfield. The asymptotic number of rooted maps on a
surface. J. Combin. Theory Ser. A, 43(2):244-257, 1986.

E. A. Bender and E. R. Canfield. The number of rooted maps on an orientable
surface. J. Combin. Theory Ser. B, 53(2):293-299, 1991.

E. A. Bender and E. R. Canfield. The number of degree-restricted rooted maps on
the sphere. SIAM J. Discrete Math., 7(1):9-15, 1994.

E. A. Bender, E. R. Canfield, and L. B. Richmond. The asymptotic number of rooted
maps on a surface. II. Enumeration by vertices and faces. J. Combin. Theory Ser.
A, 63(2):318-329, 1993.

E. A. Bender and Z. Gao. Asymptotic enumeration of labelled graphs by genus.
FElectron. J. Combin., 18(1):Paper 13, 28, 2011.

E. A. Bender, Z. Gao, and L. B. Richmond. Almost all rooted maps have large
representativity. J. Graph Theory, 18(6):545-555, 1994.

E. A. Bender, Z. Gao, and L. B. Richmond. The map asymptotics constant t,.
FElectron. J. Combin., 15(1):Research paper 51, 8, 2008.

213



214

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

22]

23]

[24]

[25]

[26]

[27]

28]

[29]

BIBLIOGRAPHY

E. A. Bender, Z. Gao, L. B. Richmond, and N. C. Wormald. Asymptotic properties
of rooted 3-connected maps on surfaces. J. Austral. Math. Soc. Ser. A, 60(1):31-41,
1996.

[. Benjamini and N. Curien. Simple random walk on the uniform infinite planar
quadrangulation: subdiffusivity via pioneer points. Geom. Funct. Anal., 23(2):501—
531, 2013.

F. Bergeron. Algebraic combinatorics and coinvariant spaces. CMS Treatises in
Mathematics. Canadian Mathematical Society, Ottawa, ON, 2009.

F. Bergeron, G. Labelle, and P. Leroux. Combinatorial species and tree-like struc-
tures, volume 67 of Encyclopedia of Mathematics and its Applications. Cambridge
University Press, Cambridge, 1998. Translated from the 1994 French original by
Margaret Readdy, With a foreword by Gian-Carlo Rota.

F. Bergeron and L.-F. Préville-Ratelle. Higher trivariate diagonal harmonics via
generalized Tamari posets. J. Comb., 3(3):317-341, 2012.

O. Bernardi. An analogue of the Harer-Zagier formula for unicellular maps on
general surfaces. Adv. in Appl. Math., 48(1):164-180, 2012.

O. Bernardi and N. Bonichon. Intervals in Catalan lattices and realizers of triangu-
lations. J. Combin. Theory Ser. A, 116(1):55-75, 2009.

O. Bernardi and E. Fusy. Unified bijections for maps with prescribed degrees and
girth. J. Combin. Theory Ser. A, 119(6):1351-1387, 2012.

J. Bettinelli. The topology of scaling limits of positive genus random quadrangula-
tions. Ann. Probab., 40(5):1897-1944, 2012.

J. Bettinelli. A bijection for nonorientable general maps. arXiv preprint 1512.02208,
2015.

M. Bodirsky, M. Kang, M. Loffler, and C. McDiarmid. Random cubic planar graphs.
Random. Struct. Algor., 30(1-2):78-94, 2007.

Béla Bollobéas. Random graphs, volume 73 of Cambridge Studies in Advanced Math-
ematics. Cambridge University Press, Cambridge, second edition, 2001.

N. Bonichon, M. Bousquet-Mélou, and E. Fusy. Baxter permutations and plane
bipolar orientations. Sém. Lothar. Combin., 61A:Art. B61Ah, 29, 2009.

V. Bonzom, T. Delepouve, and V. Rivasseau. Enhancing non-melonic triangulations:
a tensor model mixing melonic and planar maps. Nuclear Phys. B, 895:161-191,
2015.

M. Bousquet-Mélou. Rational and algebraic series in combinatorial enumeration.
In International Congress of Mathematicians. Vol. III, pages 789-826. Eur. Math.
Soc., Ziirich, 2006.

M. Bousquet-Mélou. Counting planar maps, coloured or uncoloured. In Surveys
in combinatorics 2011, volume 392 of London Math. Soc. Lecture Note Ser., pages
1-49. Cambridge Univ. Press, Cambridge, 2011.



BIBLIOGRAPHY 215

[30]

[31]

32]

[42]

M. Bousquet-Mélou, G. Chapuy, and L.-F. Préville-Ratelle. The representation of
the symmetric group on m-Tamari intervals. Adv. Math., 247:309-342, 2013.

M. Bousquet-Mélou, E. Fusy, and L.-F. Préville-Ratelle. The number of intervals
in the m-Tamari lattices. Electron. J. Combin., 18(2):Research Paper 31, 26 pp.
(electronic), 2011.

M. Bousquet-Mélou and A. Jehanne. Polynomial equations with one catalytic vari-
able, algebraic series and map enumeration. J. Combin. Theory Ser. B, 96(5):623—
672, 2006.

M. Bousquet-Mélou and G. Schaeffer. Enumeration of planar constellations. Adwv.
in Appl. Math., 24(4):337-368, 2000.

J. Bouttier, P. Di Francesco, and E. Guitter. Planar maps as labeled mobiles.
FElectron. J. Combin., 11(1):Research Paper 69, 27, 2004.

W. G. Brown. On the existence of square roots in certain rings of power series.
Math. Ann., 158:82-89, 1965.

S. R. Carrell and G. Chapuy. Simple recurrence formulas to count maps on orientable
surfaces. J. Combin. Theory Ser. A, 133:58-75, 2015.

F. Chapoton. Sur le nombre d’intervalles dans les treillis de Tamari. Sém. Lothar.
Combin., 55:Art. B55f, 18 pp. (electronic), 2005.

G. Chapuy. Asymptotic enumeration of constellations and related families of maps
on orientable surfaces. Combin. Probab. Comput., 18(4):477-516, 20009.

G. Chapuy. The structure of unicellular maps, and a connection between maps
of positive genus and planar labelled trees. Probab. Theory Related Fields, 147(3-
4):415-447, 2010.

G. Chapuy. A new combinatorial identity for unicellular maps, via a direct bijective
approach. Adv. in Appl. Math., 47(4):874-893, 2011.

G. Chapuy and M. Dotega. A bijection for rooted maps on general surfaces. In
Proceedings of 27th International Conference on Formal Power Series and Algebraic
Combinatorics (FPSAC 2015), Discrete Mathematics and Theoretical Computer
Science (DMTCS), 2015.

G. Chapuy and W. Fang. Generating functions of bipartite maps on orientable
surfaces (extended abstract). In Proceedings of 27th International Conference on
Formal Power Series and Algebraic Combinatorics (FPSAC 2015), Discrete Math-
ematics and Theoretical Computer Science (DMTCS), pages 607618, 2015.

G. Chapuy, V. Féray, and E. Fusy. A simple model of trees for unicellular maps. J.
Combin. Theory Ser. A, 120(8):2064-2092, 2013.

G. Chapuy, E. Fusy, O. Giménez, B. Mohar, and M. Noy. Asymptotic enumeration
and limit laws for graphs of fixed genus. J. Combin. Theory Ser. A, 118(3):748-777,
2011.



216 BIBLIOGRAPHY

[45] G. Chapuy, E. Fusy, M. Kang, and B. Shoilekova. A complete grammar for de-
composing a family of graphs into 3-connected components. FElectron. J. Combin.,
15(1):Research Paper 148, 39, 2008.

[46] G. Chapuy, M. Marcus, and G. Schaeffer. A bijection for rooted maps on orientable
surfaces. SIAM J. Discrete Math., 23(3):1587-1611, 2009.

[47] Ph. Chassaing and B. Durhuus. Local limit of labeled trees and expected volume
growth in a random quadrangulation. Ann. Probab., 34(3):879-917, 2006.

[48] Ph. Chassaing and G. Schaeffer. Random planar lattices and integrated superBrow-
nian excursion. Probab. Theory Related Fields, 128(2):161-212, 2004.

[49] F. Chung and L. Lu. Complex graphs and networks, volume 107 of CBMS Re-
gional Conference Series in Mathematics. Published for the Conference Board of
the Mathematical Sciences, Washington, DC; by the American Mathematical Soci-
ety, Providence, RI, 2006.

[50] A. Claesson, S. Kitaev, and E. Steingrimsson. An involution on (1, 0)-trees. Adv.
in Appl. Math., 51(2):276-284, 2013.

[51] G. Collet and E. Fusy. A simple formula for the series of constellations and quasi-
constellations with boundaries. FElectron. J. Combin., 21(2):Paper 2.9, 27, 2014.

[52] R. Cori. Un code pour les graphes planaires et ses applications. Société Mathéma-
tique de France, Paris, 1975. With an English abstract, Astérisque, No. 27.

[53] R. Cori and G. Schaeffer. Description trees and Tutte formulas. Theoret. Comput.
Sci., 292(1):165-183, 2003. Selected papers in honor of Jean Berstel.

[54] R. Cori and B. Vauquelin. Planar maps are well labeled trees. Canad. J. Math.,
33(5):1023-1042, 1981.

[55] M. Delest and X.G. Viennot. Algebraic languages and polyominos enumeration.
Theor. Comput. Sci., 34:169-206, 1984.

[56] M. Dotega, V. Féray, and P. Sniady. Jack polynomials and orientability generating
series of maps. Sém. Lothar. Combin., 70:Art. B70j, 50, 2013.

[57] E. Duchi, D. Poulalhon, and G. Schaeffer. Bijections for simple and double Hurwitz
numbers. arXiv preprint 1410.6521, 2014.

[58] R. Ehrenborg and G.-C. Rota. Apolarity and canonical forms for homogeneous
polynomials. European J. Combin., 14(3):157-181, 1993.

[59] T. Ekedahl, S. Lando, M. Shapiro, and A. Vainshtein. Hurwitz numbers and inter-
sections on moduli spaces of curves. Invent. Math., 146(2):297-327, 2001.

[60] P. Erd6s and A. Rényi. On random graphs. I. Publ. Math. Debrecen, 6:290-297,
1959.

[61] P. Erdés and A. Rényi. On the evolution of random graphs. Magyar Tud. Akad.
Mat. Kutato Int. Kézl., 5:17-61, 1960.



BIBLIOGRAPHY 217

[62] B. Eynard. Formal matrix integrals and combinatorics of maps. In Random matri-

ces, random processes and integrable systems, CRM Ser. Math. Phys., pages 415—
442. Springer, New York, 2011. arXiv preprint math-ph/0611087.

[63] B. Eynard. Counting Surfaces. Birkhduser Basel, 2016.

[64] B. Eynard and N. Orantin. Topological recursion in enumerative geometry and

[65]

[66]

[67]

random matrices. J. Phys. A, 42(29):293001, 117, 2009.

W. Fang. A generalization of the quadrangulation relation to constellations and
hypermaps. J. Combin. Theory Ser. A, 127:1-21, 2014.

W. Fang, M. Kang, M. MoShammer, and P. Spriissel. Cubic graphs and related
triangulation on orientable surfaces. submitted, 2016.

W. Fang, M. Kang, M. Mo hammer, and Ph. Spriissel. Enumeration of cubic multi-
graphs on orientable surfaces. In Proceedings of European Conference on Com-
binatorics, Graph Theory and Applications 2015 (Eurocomb 2015), volume 49 of
Electronic Notes in Discrete Mathematics, pages 603610, 2015.

W. Fang and L.-F. Préville-Ratelle. From generalized Tamari intervals to non-
separable planar maps (extended abstract). arXiv preprint 1511.05937, 2016.

Ph. Flajolet and R. Sedgewick. Analytic combinatorics. Cambridge University Press,
Cambridge, 2009.

E. Fusy. New bijective links on planar maps via orientations. European J. Combin.,
31(1):145-160, 2010.

Z. Gao. The number of rooted 2-connected triangular maps on the projective plane.
J. Combin. Theory Ser. B, 53(1):130-142, 1991.

Z. Gao. The asymptotic number of rooted 2-connected triangular maps on a surface.
J. Combin. Theory Ser. B, 54(1):102-112, 1992.

Z. Gao. The number of degree restricted maps on general surfaces. Discrete Math.,
123(1-3):47-63, 1993.

Z. Gao. A pattern for the asymptotic number of rooted maps on surfaces. J. Combin.
Theory Ser. A, 64(2):246-264, 1993.

E. N. Gilbert. Random graphs. Ann. Math. Statist., 30:1141-1144, 1959.

O. Giménez and M. Noy. Asymptotic enumeration and limit laws of planar graphs.
J. Amer. Math. Soc., 22(2):309-329, 2009.

O. Giménez and M. Noy. Counting planar graphs and related families of graphs.
In Surveys in combinatorics 2009, volume 365 of London Math. Soc. Lecture Note
Ser., pages 169-210. Cambridge Univ. Press, Cambridge, 2009.

I. P. Goulden, M. Guay-Paquet, and J. Novak. Monotone Hurwitz numbers in genus
zero. Canad. J. Math., 65(5):1020-1042, 2013.



218

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[92]

[93]

[94]

BIBLIOGRAPHY

[. P. Goulden, M. Guay-Paquet, and J. Novak. Polynomiality of monotone Hurwitz
numbers in higher genera. Adv. Math., 238:1-23, 2013.

I. P. Goulden, M. Guay-Paquet, and J. Novak. Monotone Hurwitz numbers and the
HCIZ integral. Ann. Math. Blaise Pascal, 21(1):71-89, 2014.

[. P. Goulden and D. M. Jackson. Connection coefficients, matchings, maps and

combinatorial conjectures for Jack symmetric functions. Trans. Amer. Math. Soc.,
348(3):873-892, 1996.

I. P. Goulden and D. M. Jackson. Maps in locally orientable surfaces, the double
coset algebra, and zonal polynomials. Canad. J. Math., 48(3):569-584, 1996.

[. P. Goulden and D. M. Jackson. Transitive factorisations into transpositions and
holomorphic mappings on the sphere. Proc. Amer. Math. Soc., 125(1):51-60, 1997.

I. P. Goulden and D. M. Jackson. The KP hierarchy, branched covers, and triangu-
lations. Adv. Math., 219(3):932-951, 2008.

[. P. Goulden, D. M. Jackson, and R. Vakil. The Gromov-Witten potential of
a point, Hurwitz numbers, and Hodge integrals. Proc. London Math. Soc. (3),
83(3):563-581, 2001.

[. P. Goulden and A. Nica. A direct bijection for the Harer-Zagier formula. J.
Combin. Theory Ser. A, 111(2):224-238, 2005.

A. Goupil and G. Schaeffer. Factoring n-cycles and counting maps of given genus.
European J. Combin., 19(7):819-834, 1998.

L. Guibas and J. Stolfi. Primitives for the manipulation of general subdivisions and
the computation of voronoi. ACM Trans. Graph., 4(2):74-123, 1985.

E. Guitter. Distance statistics in large toroidal maps. J. Stat. Mech. Theor. Ezp.,
2010(04):P04018, 2010.

R. Gurau. The 1/N expansion of colored tensor models. Ann. Henri Poincaré,
12(5):829-847, 2011.

J. Haglund. The q,t-Catalan numbers and the space of diagonal harmonics, vol-
ume 41 of University Lecture Series. American Mathematical Society, Providence,
RI, 2008.

J. Harer and D. Zagier. The Euler characteristic of the moduli space of curves.
Invent. Math., 85(3):457-485, 1986.

J. Hopcroft and R. Tarjan. Algorithm 447: Efficient algorithms for graph manipu-
lation. Commun. ACM, 16(6):372-378, 1973.

A. Hurwitz. Ueber Riemann’sche Fliachen mit gegebenen Verzweigungspunkten.
Math. Ann., 39(1):1-60, 1891.

D. M. Jackson. Counting cycles in permutations by group characters, with an
application to a topological problem. Trans. Amer. Math. Soc., 299(2):785-801,
1987.



BIBLIOGRAPHY 219

[96]

[97]

[98]

[99]

[100]

[101]

102]

103]

[104]

[105]

[106]

107]

[108]

[109]

[110]

[111]

D. M. Jackson and T. I. Visentin. A character-theoretic approach to embeddings
of rooted maps in an orientable surface of given genus. Trans. Amer. Math. Soc.,
322(1):343-363, 1990.

D. M. Jackson and T. I. Visentin. Character theory and rooted maps in an orientable
surface of given genus: face-colored maps. Trans. Amer. Math. Soc., 322(1):365-376,
1990.

D. M. Jackson and T. I. Visentin. A combinatorial relationship between Eulerian
maps and hypermaps in orientable surfaces. J. Combin. Theory Ser. A, 87(1):120—
150, 1999.

B. Jacquard and G. Schaeffer. A bijective census of nonseparable planar maps. J.
Combin. Theory Ser. A, 83(1):1-20, 1998.

G. James and A. Kerber. The representation theory of the symmetric group, vol-
ume 16 of Encyclopedia of Mathematics and its Applications. Addison-Wesley Pub-
lishing Co., Reading, Mass., 1981. With a foreword by P. M. Cohn, With an intro-
duction by Gilbert de B. Robinson.

S. Janson, D. E. Knuth, T. Luczak, and B. Pittel. The birth of the giant component.
Random Structures Algorithms, 4(3):231-358, 1993. With an introduction by the
editors.

M. Kang and T. fuczak. Two critical periods in the evolution of random planar
graphs. Trans. Amer. Math. Soc., 364(8):4239-4265, 2012.

M. Kazarian and P. Zograf. Virasoro constraints and topological recursion for
Grothendieck’s dessin counting. Lett. Math. Phys., 105(8):1057-1084, 2015.

S. Kitaev. Patterns in permutations and words. Monographs in Theoretical Com-
puter Science. An EATCS Series. Springer, Heidelberg, 2011.

S. Kitaev and A. de Mier. Enumeration of fixed points of an involution on (1,
0)-trees. Graphs and Combinatorics, 30(5):1207-1221, 2013.

M. A. La Croix. The combinatorics of the Jack parameter and the genus series for
topological maps. PhD thesis, University of Waterloo, 2009.

S. K. Lando and A. K. Zvonkin. Graphs on surfaces and their applications, volume
141 of Encyclopaedia of Mathematical Sciences. Springer-Verlag, 2004. Appendix
by D. B. Zagier.

B. Lass. Démonstration combinatoire de la formule de Harer-Zagier. C. R. Acad.
Sci. Paris Sér. I Math., 333(3):155-160, 2001.

J.-F. Le Gall. Uniqueness and universality of the Brownian map. Ann. Probab.,
41(4):2880-2960, 2013.

J. Levine. Note on the number of pairs of non-intersecting routes. Scripta Math.,
24:335-338, 19509.

D. E. Littlewood. Modular representations of symmetric groups. Proc. Roy. Soc.
London. Ser. A., 209:333-353, 1951.



220

[112]

[113]

114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

BIBLIOGRAPHY

J.-L. Loday and M. O. Ronco. Hopf algebra of the planar binary trees. Adv. Math.,
139(2):293-309, 1998.

T. Luczak, B. Pittel, and J. C. Wierman. The structure of a random graph at the
point of the phase transition. Trans. Amer. Math. Soc., 341(2):721-748, 1994.

D. Lépez N., L.-F. Préville-Ratelle, and M. O. Ronco. Algebraic structures defined
on m-Dyck paths. arXiv:1508.01252, 2015.

J.-F. Marckert and A. Mokkadem. Limit of normalized quadrangulations: the Brow-
nian map. Ann. Probab., 34(6):2144-2202, 2006.

G. Miermont. Tessellations of random maps of arbitrary genus. Ann. Sci. Ec. Norm.
Supér. (4), 42(5):725-781, 20009.

B. Mohar and C. Thomassen. Graphs on surfaces. Johns Hopkins Studies in the
Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD, 2001.

M. Noy, V. Ravelomanana, and J. Rué. On the probability of planarity of a random
graph near the critical point. Proc. Amer. Math. Soc., 143(3):925-936, 2015.

A. Okounkov. Toda equations for Hurwitz numbers. Math. Res. Lett., 7(4):447-453,
2000.

A. Okounkov. Infinite wedge and random partitions. Selecta Math. (N.S.), 7(1):57—
81, 2001.

D. Poulalhon and G. Schaeffer. Factorizations of large cycles in the symmetric
group. Discrete Math., 254(1-3):433-458, 2002.

D. Poulalhon and G. Schaeffer. Optimal coding and sampling of triangulations.
Algorithmica, 46(3-4):505-527, 2006.

L.-F. Préville-Ratelle and X. Viennot. An extension of Tamari lattices. In Pro-

ceedings of 27th International Conference on Formal Power Series and Algebraic
Combinatorics (FPSAC 2015), 2014.

Rimhak Ree. A theorem on permutations. J. Combin. Theory Ser. A, 10:174-175,
1971.

N. Robertson and R. Vitray. Representativity of surface embeddings. In Paths,
flows, and VLSI-layout (Bonn, 1988), volume 9 of Algorithms Combin., pages 293—
328. Springer, Berlin, 1990.

B. E. Sagan. The symmetric group, volume 203 of Graduate Texts in Mathematics.
Springer-Verlag, New York, second edition, 2001.

G. Schaeffer. Conjugaison d’arbres et cartes aléatoires combinatoires. PhD thesis,
Université de Bordeaux 1, 1998.

G. Schaeffer. Planar maps. In Handbook of Enumerative Combinatorics. CRC Press,
2015.



BIBLIOGRAPHY 221

[129] J.-P. Serre. Linear representations of finite groups. Springer-Verlag, New York,
1977. Translated from the second French edition by Leonard L. Scott, Graduate
Texts in Mathematics, Vol. 42.

[130] R. P. Stanley. Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies
in Advanced Mathematics. Cambridge University Press, Cambridge, 1999. With a
foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin.

[131] W. T. Tutte. A census of Hamiltonian polygons. Canad. J. Math., 14:402-417,
1962.

[132] W. T. Tutte. A census of planar triangulations. Canad. J. Math., 14:21-38, 1962.
[133] W. T. Tutte. A census of slicings. Canad. J. Math., 14:708-722, 1962.
[134] W. T. Tutte. A census of planar maps. Canad. J. Math., 15:249-271, 1963.

[135] W. T. Tutte. Connectivity in graphs. Mathematical Expositions, No. 15. University
of Toronto Press, Toronto, Ont.; Oxford University Press, London, 1966.

[136] A. M. Vershik and A. Yu. Okounkov. A new approach to representation theory of
symmetric groups. II. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov.
(POMI), 307(Teor. Predst. Din. Sist. Komb. i Algoritm. Metody. 10):57-98, 281,
2004.

[137] T. R. S. Walsh and A. B. Lehman. Counting rooted maps by genus. I. J. Combi-
natorial Theory Ser. B, 13:192-218, 1972.

[138] D. Zeilberger. The umbral transfer-matrix method. I. Foundations. J. Combin.
Theory Ser. A, 91(1-2):451-463, 2000. In memory of Gian-Carlo Rota.



	Introduction
	The many faces of maps
	Maps as graph embeddings
	Polygon gluing and rotation system

	Tools for map enumeration
	Generating functions
	Bijections
	Character methods

	A road map of our tour

	First steps in map enumeration
	The many classes of maps
	Maps involving degree and connectivity
	Bipartite maps and constellations

	Symmetric group
	Group algebra and characters of the symmetric group
	Counting factorizations using characters

	Generating functions
	Combinatorial classes and their construction
	Analytic method for asymptotics
	Resolution of functional equations in examples


	Generalized quadrangulation relation
	Motivation
	Rotation systems and generating functions
	Factorization of characters
	Infinite wedge space and boson-fermion correspondence
	m-splittable partitions
	Combinatorial proof of Theorem 3.3

	Generalization of the quadrangulation relation
	From series to numbers
	Positivity of coefficients in the expression of H(g)


	Enumerating constellations
	Functional equations
	Resolution of the planar case
	Transformation
	Validity and uniqueness

	The higher genus case for bipartite maps
	Main results
	Proof strategy of Theorem 4.20
	Structure of the Greek variables
	Structure of the kernel and its expansions at critical points
	Unrooting step and proof of Theorems 4.17 and 4.19
	Final comments


	Maps and generalized Tamari intervals
	Tamari lattice and its generalizations
	Recursive decompositions
	Recursive decomposition of synchronized intervals
	Recursive decomposition of non-separable planar maps

	Bijections
	From maps to trees
	From trees to intervals

	Discussion

	Counting graphs with maps
	From random graphs to cubic graphs
	Using triangulations to count cubic graphs
	Map surgeries
	Counting 3-connected cubic maps with surgeries
	The asymptotic behavior of Rg(t)
	Reducing Ng(t) to Rg(t)
	Reducing Mg(t) to Ng(t) : loop elimination

	Controlling widths
	Decompositions of cubic graphs
	Asymptotic enumeration of cubic graphs

	Towards the uncharted

